Brendan H.L. Lee, MD, PhD

Department or Service

Rating

Specialty

Genetics

Phone: 832-822-4280
Fax: 713-798-5168

Contact Information

One Baylor Plaza
BCM R814
Houston, TX 77030
United States
Texas

Robert and Janice McNair Endowed Chair in Molecular and Human Genetics

Baylor College of Medicine

Education

School Education Degree Year
Baylor College of Medicine fellowship Genetics 1997
Baylor College of Medicine residency Pediatrics 1995
State University of New York at Brooklyn College of Medicine medical school Doctor of Medicine 1993

About

Clinical Interests:

Skeletal Dysplasias, Inborn Errors of Metabolism, Urea Cycle Disorders.

Research Interests:

Genetic pathways that specify development and homeostasis: Translational studies of skeletal development and urea cycle disorders, and therapy for metabolic diseases

The overall mission of my research program is to elucidate basic developmental and biochemical pathways that regulate mammalian organogenesis and homeostasis, and to apply this to the development of new diagnostic and therapeutic tools for disorders resulting from the dysregulation of these pathways. A common theme is an approach involving the flow of information from the study of human genetic disease phenotypes, to the generation and testing of hypotheses in cell and animal models, to the evaluation of the consequences of these dysregulated processes back in humans, and finally, to the development of treatment protocols. We have focused on elucidating the transcriptional networks governing development and the signaling pathways that regulate them. We correlate human genetic disease phenotypes with mouse models to ask what genes are regulated by and targets of key transcription factors during chondrogenesis, osteoblastogenesis, and limb and kidney formation. Current studies are focused on the transcription factors Runx2, Trps1, Sox9, and Lmx1b, to Tgf? and Notch signaling pathways during skeletogenesis, and novel post-translational modifications of matrix proteins. These basic and translational studies are linked intimately with clinical research performed at the Texas Children's Hospital Skeletal Dysplasia Clinic. Here, the multidisciplinary care of pediatric patients with skeletal malformations is closely linked with studies aimed at understanding the consequences of genetic mutations, and at quantitation and treatment of osteoporosis associated with skeletal dysplasias.

In contrast to developmental pathways, much basic information is already available in well studied biochemical pathways that are critical for homeostasis, such as the urea cycle. Here, we have translated this basic information into stable isotope based metabolic protocols to develop new tools for diagnosis and clinical management of urea cycle patients. By using this unique human disease model and physiologic tools that measure the in vivo activity of this pathway, we are asking questions about the interaction of the urea cycle and the nitric oxide pathways that contribute to key gene-nutrient interactions during postnatal growth and development. The ultimate goal is to develop new treatments and this is the focus of our gene replacement studies using helper-dependent adenoviral vectors. An important component of this is work focused on understanding and preventing the host innate immune response and acute toxicity associated with adenovirus treatment. The spectrum of my research program extends from gene identification in human disease, to correlating mechanisms of disease with normal biological processes, to measuring and manipulating these pathways for diagnosis and treatment in humans and in animal models.

Organization

Organization Name Role
American College of Medical Genetics Member
American Society for Clinical Investigation Board of Councilors
American Society of Human Genetics Board of Directors
Society for Inherited Metabolic Disease Member
Society for Pediatric Research Member

Selected Publications

Erez A, Nagamani SC, Shchelochkov OA, Premkumar MH, Campeau PM, Chen Y, Garg HK, Li L, Mian A, Bertin TK, Black JO, Zeng H, Tang Y, Reddy AK, Summar M, O'Brien WE, Harrison DG, Mitch WE, Marini JC, Aschner JL, Bryan NS, Lee B (2011). Requirement of argininosuccinate lyase for systemic nitric oxide production. Nature Medicine 17(12): 1619-26. [Pub Med]

Patient & Family Comments