WNT PATHWAY INHIBITOR ROLE IN TREATMENT REFRACTORY HEPATOBLASTOMA

Espinoza, Andres F¹, Rohit Srivastava², Sai Govindu², Aayushi Shah², Roma Patel², Sarah Woodfield², Sanjeev Vausdevan²

- ¹ Baylor College of Medicine, Department of Surgery, Pediatric General Surgery
- ² BCM, TCH, Surgery

Keywords: Hepatoblastoma, wnt, small molecule inhibitor

Background: Relapsed hepatoblastoma (HB) has a survival rate less than 50% due to limited treatment options. WNT/ β -catenin pathway has been shown to have a significant role in liver development and tumorigenesis. Hepatoblastoma has been shown to have high rates of β -catenin mutations and is a candidate for WNT/ β -catenin pathway inhibitors. We sought to characterize the role that a novel WNT/ β -catenin pathway inhibitor has on hepatoblastoma in vivo.

Materials/Methods: Established HB cell lines and a HB patient derived xenograft cell line were treated with WNT/ β -catenin pathway inhibitor, Tegavivint. Cell viability assays were performed to determine half-maximal inhibitory concentration (IC50). Difference in gene expression of WNT/ β -catenin pathway after treatment was assessed using quantitative Reverse transcription polymerase chain reaction (qPCR).

Results: Established hepatoblastoma cell lines (Hep T1, Hep G2, HUH-6) and patient derived cell line (HB17) showed decreased beta-catenin expression after Tegavivint treatment after 24 hours. Cell viability assays demonstrated IC50 after 24 hours of Tegavivint treatment of HUH6 at 0.03 μ M, Hep T1 at 0.06 μ M, Hep G2 at 0.04 μ M, and HB17 at 0.76 μ M.

Conclusions: We conclude Tegavivint, a novel WNT/ β -catenin pathway inhibitor has a role in treatment of relapsed hepatoblastoma. Further evaluation of the mechanism of cell death with Tegavivint is warranted.

Images / Graph / Table: No image uploaded