

MYOCARDIAL STRESS PERFUSION MRI: EXPERIENCE IN PEDIATRIC PATIENTS WITH KAWASAKI DISEASE AND CORONARY ARTERY STENOSES UTILIZING REGADENOSON

Tam Doan, MD¹, James C. Wilkinson¹, MD, Robert Loar, MD¹, Amol Pednekar, PhD², Prakash M. Masand, MD², Cory Noel, MD¹

¹Department of Pediatrics (Cardiology), ²Department of Radiology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA

BACKGROUND

- Coronary artery (CA) involvement in Kawasaki disease (KD) evolves over time and can lead to thrombosis, stenosis, and occlusion
- Screening for myocardial perfusion during periodic routine assessment is important
- Vasodilator stress cardiac magnetic resonance (CMR)
 provides excellent tool to risk stratify patients for major
 cardiac events
- Regadenoson is a selective CA hyperemia agent and has not been studied in children with KD
- Aim: to assess the safety, feasibility, and diagnostic utility of regadenoson stress CMR in children with KD and CA disease

METHODS

- Retrospective cross-sectional study
- All patients with KD who had a regadenoson stress perfusion CMR from August 2014 to December 2018
- Major events: heart block, arrhythmia, myocardial infarction, arrest, and death. Minor events: hypotension, nausea/vomiting, rash, chest pain, discomfort, bronchospasm, hospitalization
- Rest and stress perfusion imaging, high frame rate cine to assess wall motion, and late gadolinium enhancement (LGE) imaging were acquired on a 1.5 T clinical magnet (Phillips Ingenia)
- The initial CMR of each patient was used to assess agreement with X-ray angiography (XRA) or CT or whole heart sequence (CMR) of the CA within 6 months of the stress CMR

STUDY SUBJECTS (n = 32)			
Age at onset (years), median (ranges) < 1 1-5 >5	4 (0.25-17) 12 (38%) 9 (28%) 11 (34%)		
Male, n (%)	20 (62)		
Coronary artery anatomy Right dominant, n (%) Left dominant Co-dominant Unknown	21 (65.6) 1 (3.1) 1 (3.1) 9 (28.1)		
AHA Risk Levels I II III IV V	1 (2%) 3 (7%) 7 (17%) 6 (14%) 24 (58%		

KD shock in 5 (16%) and recurrent KD in 4 (13%)

RESULTS

- 41 stress CMR were performed in 32 patients
 - Median age 11 (2-19) years
 - Median weight 41 (13-93) kg

by mean and standard deviation.

HEMODYNAMICS CHANGES					
	At rest	Peak stress	% Change	р	
HR	78 ± 15	126 ± 16	48 ± 13	<0.001	
SBP	104 ± 11	99 ± 15	5 ± 10	<0.001	
DBP	57 ± 13	54 ± 14	4 ± 9	0.01	
HR, heart rate (bpm). SBP, systolic blood pressure (mmHg).					

DBP, diastolic blood pressure (mmHg). Values represented

FIRST PASS PERFUSION (FPP)

All examinations were complete, and images were diagnostic in all cases.

ADVERSE EVENTS Non-sedated (23) Sedated (18) Major event Minor events 5 (28%) 1 (4%) Hypotention Nausea/vomiting Rash Chest pain Discomfort 1 (6%) Bronchospasm Hospitalization 6 (33%) 1 (4%) Total events

DIAGNOSTIC UTILITY

Distribution of CA stenoses and perfusion defects (n = 30)

PERFUSION and CORONARY ANGIOGRAPHY

Perfusion and XRA/CT/CMR for LCA and RCA (n=26)					
Variable (%)	LCA	RCA			
Positive percent agreement	100	100			
Negative percent agreement	90.9	85.7			
Overall percent agreement	92.3	88.5			

- 4 underwent revascularization
- No patients with negative stress CMR had a cardiac event during the study period.

LIMITATIONS

- Retrospective, single center study
- Small sample size
- Different imaging modalities to evaluate for CA stenosis

CONCLUSIONS

- Regadenoson is hemodynamically safe and feasible as a CA hyperemia agent in children with KD and CA disease
- Regadenoson stress CMR showed good agreement with angiography/CT/CMR and helped with decision making for revascularization
- Regadenoson stress CMR may be a viable non-invasive tool in pediatric KD to assess for myocardial ischemia.

DISCLOSURES

No conflict of interest

