Continuous Feeding Does Not Blunt Skeletal Muscle Protein Synthesis, Satellite Cell Abundance, or Lean Growth in a Neonatal Pig Model of Prematurity

Marko Rudar,1 Jane K Naberhuis,1 Agus Suryawan,1 Hanh V Nguyen,1 Barbara Stoll,1 Candace Style,2 Mariatu Verla,2 Oluyinka O Olutoye,2 Douglas G Burrin,1 Marta L Fiorotto,1 Teresa Davis1

1USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
2Department of Pediatric Surgery, Texas Children's Hospital and Department of Pediatrics, Baylor College of Medicine, Houston, Texas

BACKGROUND
- Premature birth can lead to lower linear growth rates and altered body composition
- The specific reduction in skeletal muscle mass by prematurity may increase lifelong risk for metabolic disease
- Muscle growth requires the coordinated activation of: protein synthesis for the accretion of muscle proteins
- Proliferation and differentiation of satellite cells (adult muscle stem cells) for the addition of myofibers
- Infants who cannot feed normally can be fed with an orogastric tube on an intermittent bolus feeding or continuous feeding schedule
- In term pigs, feeding modality can affect lean growth:
 - Intermittent bolus feeding elicits a cyclical pattern of circulating insulin and amino acids that promotes skeletal muscle protein synthesis and lean growth
 - Continuous feeding elicits low and constant levels of insulin and amino acids in blood that is not conducive to maximizing anabolic signaling
- The impact of feeding modality on satellite cell abundance and myonuclear accretion in preterm pigs has not been investigated

HYPOTHESIS
- Intermittent bolus feeding will promote lean growth compared to continuous feeding in a neonatal piglet model of prematurity
- Intermittent bolus feeding will promote satellite cell abundance and myonuclear accretion compared to continuous feeding in skeletal muscle of preterm pigs

METHODS
- Animals
 - Preterm neonatal pigs delivered by Cesarean section (105 d gestation, equivalent to 30-32 week gestation for humans)
 - Initial BW = 952 ± 205 g
 - Surgeries: unilateral arterial catheter, jugular vein catheter, orogastric feeding tube
- Surgeries: unilateral arterial catheter, jugular vein catheter, orogastric feeding tube
- Diet (18% kcal/kg-d, 210 kcal/kg-d, 16 g protein/kg-d)
- Pigs fed from full panerianal to full enteral feeding over 6 d
- Treatments
 - Intermittent bolus feeding (INT; n = 30)
 - Fed every 3 h for the initial 7 d; fed every 4 h for the remaining 15 d
 - For protein synthesis analysis, INT pigs divided into postabsorbptive (INT-PP, n = 14, sampled before feeding) and postprandial (INT-PP, n = 16, sampled 60 min after feeding) groups
 - Continuous feeding (CONT; n = 14)
 - Fed at a constant rate for 22 d
 - Pigs fed every 4 h for 22 d
 - Intraperitoneal 2-deoxyglucose (BrdU, 25 mg·kg⁻¹·i.v) was injected every 12 h from D19 to D20
 - Body composition analyzed by DXA on D21
 - J-Inj, II-Phenylalanine injected on D20
 - Pigs euthanized on D22 for longitudinal dors (LD) muscle collection
- Sample analysis
 - Serial LD muscle cryosections from a subset of pigs analysed by immunofluorescence: Pax7+, laminin, and nuclei (sublaminal cell satellite cells); Pax7 is a transcription factor regulated by satellite cells
 - BMD, dystrophin, and nuclei (sublamellar BrdU and total myonuclei); BrdU labels proliferating cells
 - Fiber cross-sectional area (CSA) and minimum Feret diameter
 - Fluorescent images captured by confocal microscopy (>1000 fibers per pig)
- Plasma insulin and branched-chain amino acid (BCAA) concentrations
 - Analysis of protein synthesis for the addition of adult muscle stem cells (for the accretion of muscle proteins): the measurement of fractional protein synthesis rate by LCMS-MS
- Statistical analysis
 - Data were analyzed in SAS (mixed and generalized linear models)
 - Differences among treatment means were determined with the post-hoc Tukey test
 - Data are presented as least square means ± SE. Means with different letters are significantly different (P < 0.05)

RESULTS
- Baseline plasma insulin and BCAA concentrations were lower in the INT group compared to the CONT group
- Feeding increased plasma insulin and BCAA concentrations in the INT group in a time-dependent manner
- Plasma insulin was higher at 30 and 60 min in the INT group compared to the CONT group
- Plasma BCAA was higher at 90 min in the INT group compared to the CONT group

CONCLUSIONS
- Despite differences in plasma insulin and amino acid profiles between INT and CONT feeding, LD muscle protein synthesis was similar between feeding modalities in pigs born preterm
- Feeding modality likewise did not affect LD muscle satellite cell abundance or myonuclear accretion in pigs born preterm
- Taken together, intermittent bolus feeding did not promote lean growth more than continuous feeding in a neonatal piglet model of prematurity
- We have previously reported that the number of satellite cells is approximately 42% greater in pigs born at term at 28-30 d age compared to pigs born preterm at 14-15 d term equivalent age
- Diminished satellite cell abundance in skeletal muscle may contribute to growth faltering in premature infants

Figure 1. Plasma insulin and BCAA concentrations

Figure 2. LD muscle sublaminal Pax7+ satellite cell abundance

Figure 3. LD muscle subbassarolemmal BrdU+ and total myonuclei

Figure 4. LD muscle fiber CSA and minimum Feret diameter

Figure 5. LD muscle protein synthesis and piglet body composition