

Safety and efficacy of Fish Oil-Based Lipid Emulsion in the treatment of Intestinal Failure Associated Liver Disease:

11 year experience in a quaternary neonatal intensive care unit Anne Smazal, MD, MS; Athis Arunachalam, MD; Laura Gollins,

Texas Children's Hospital®

RD; Joseph Hagan, ScD, Amy Hair, MD; Muralidhar Premkumar, MD

Division of Neonatology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States

Background

- Soybean-oil based lipid emulsion, or SOLE (Intralipid®) has long been used as a parenteral source of lipids in neonates with intestinal failure. However, long term use of SOLE has been shown to cause intestinal failure associated liver disease (IFALD).
- Fish oil based lipid emulsion or FOLE (Omegaven®) due to its anti-inflammatory profile has been hypothesized to be therapeutic in IFALD.
- At Texas Children's Hospital, FOLE was provided to infants with IFALD under a compassionate use protocol from 2007 until its approval by the FDA in 2018.
- While the therapeutic effects of FOLE in IFALD are well known, whether the use of FOLE alters the risk of blood stream infection (BSI) in IFALD is unclear

Objective

- To study the safety and efficacy of FOLE in the treatment of infants with IFALD at TCH, provided under a compassionate use protocol from 2007 to 2018
- To compare the rate of BSI during FOLE therapy with SOLE therapy in infants with IFALD

Study Design

- 278 Infants enrolled in the compassionate use protocol to receive FOLE in the treatment of IFALD at Texas Children's Hospital, Houston Texas 2007-2018 were included in the initial study population.
- Eligibility criteria for FOLE therapy
 - Age > 14 days,
 - conjugated bilirubin (CB) ≥ 2 mg/dL,
 - Expected parenteral nutrition need of >28 days
- For analysis of BSI, 153 patients were included after excluding those with incomplete records (primarily due to transfer from outside institutions).
- Mixed effects Poisson regression models were used to assess associations of variables with BSI incidence rate per line day.
- Random effects Poisson regression models were used to investigate predictors' association with the BSI rate while accommodating repeated measures on the same patients over time.

Results

Table 1. Patient Characteristics and Outcomes			
Total infants in FOLE (Omegaven®) protocol	278		
M:F	183:95		
Gestational age (wks)#	29.7 ± 5		
Conjugated bilirubin (CB) at initiation of FOLE (mg/dL)#	5.3 ± 3.9		
Resolution of cholestasis (n,%)	232 (83.4)		
Died (n,%)	43 (15.4)		
Liver Transplant (n,%)	3 (1.07)		
Time for resolution of cholestasis (d)#	43 ± 29		
Table 2. Blood Stream Infection Data			
Patients included in BSI analysis	153		
Total BSI	146		
Patients with BSI, n (%)	93 (60.8)		
Overall BSI rate per 1000 patient days	8.9		
BSI rate per 1000 patient days SOLE vs. FOLE	12.6 vs. 6.1*		

#= Mean SD, *=p<0.05

Table 3. Predictors of BSI		
Predictor	Slope Coefficient	p-value
Gestational age	-0.0465	0.021*
Birth weight	-0.0001	0.446
Male sex	0.1713	0.383
SOLE treatment	0.7213	<0.001*
Total duration of therapy	-0.00605	0.009*
Lipid dose at BSI or end of therapy	0.3910	<0.001*
Central line factors (prior to BSI or end of therapy)		
Line days on therapy	-0.02765	<0.001*
Cumulative number of lines	-0.5347	<0.001*
Upper extremity line	-0.4445	0.029*
Lower extremity line	-0.3380	0.121
Double lumen	-0.4517	0.031*
Peak CB during therapy	0.01326	0.300
*=p<0.05		

Fig. 1. Gestational Age vs. BSI

Fig. 2. Rate of BSI SOLE vs. FOLE

Fig. 3. Rate of BSI vs. Lipid dose

Fig. 4. Rate of BSI vs. Lumen of CVL

Conclusions

- FOLE facilitated a high rate of resolution of cholestasis, high survival, and a decreased need for transplant in infants with IFALD.
- Use of FOLE was associated with lower rate of BSI when compared to SOLE BSI when compared to SOLE.
- Furthermore, lower GA, longer duration of lipid therapy, higher lipid dose, and single lumen central venous line (CVL) were associated with higher incidence of BSI.

Contact: smazal@bcm.edu