Definition: Sickle cell disease is an inherited red blood cell disorder that can cause both acute and chronic complications and is used to refer to the many genotypes that cause the characteristic clinical syndrome. (1)

Pathophysiology: Sickle cell anemia (otherwise known as HbSS, or homozygous β+ allele) is the most common form, with the second most prevalent type being HbSC, or HbS/β-thalassemia. (1) The genetic mutation that causes sickle cell disease creates an HbS polymerization that can disrupt hemoglobin architecture and flexibility and oxidative cellular stress. (1) The mutation can result in the processes of vaso-occlusion with ischemia and reperfusion injury and hemolytic anemia. (1)

Epidemiology: It is estimated that sickle cell disease affects approximately 100,000 Americans in the United States, and occurs in 1 of every 365 Black or African American births, and 1 of every 16,300 Hispanic-American births. Approximately 1 in 13 African-American babies is born with sickle-cell trait. With the utilization of pneumococcal vaccines and hydroxyurea therapy, the mortality rate for sickle cell disease has been dramatically reduced. (2)

Etiology: Vaso-occlusion crises (VOCs) are thought to be caused by microvascular obstruction and tissue ischemia (ischemia-reperfusion injury) and hemolytic anemia. (1) Although VOCs commonly occur in the extremities, when they occur in other sites they may be confused with, or can be in the early stages of, other acute complications, and etiology of the pain must be determined in order to rule out potential causes other than uncomplicated VOC. (3) Other acute complications that can manifest in acute vaso-occlusive pain include stroke, acute chest syndrome, renal infarction, myocardial infarction, priapism, splenic or hepatic sequestration. (3)

Acute chest syndrome (ACS) is both a common and serious complication of sickle cell disease. Symptoms of lower respiratory tract disease can present suddenly and be accompanied by a new pulmonary infiltrate on chest x-ray, although these changes may be subtle in the early stages. (3) The most common well-defined etiology is viral or bacterial infection (particularly Mycoplasma pneumoniae), but the complication may also result from bone marrow fat embolism, intrapulmonary aggregates of sickled cells, atelectasis, or pulmonary edema. (3)

Inclusion Criteria
- Patients 1-21 years with sickle cell disease

Exclusion Criteria
- Children < 1 year
- Patients without sickle cell disease
- Patients who exhibit signs of stroke

Diagnostic Evaluation

History: Assess for
- Lower respiratory symptoms (cough, wheezing, tachypnea, chest pain) and/or
- Previous history of acute chest syndrome episode, asthma, or stroke/transient ischemic attack
- Vaccination status

Physical Examination
- Assessment for the possibility of other serious complications concurrently with the treatment of pain
- Assess for abnormal vital signs, particularly changes in respiratory rate (RR), use of accessory muscles, color
- Auscultate lungs
- Assess for pain associated with abdominal distension for hepatic or splenic sequestration or acute cholecystitis, jaundice, or hematuria,
- Obtain pulse oximetry; detect new onset hypoxemia
- Rate severity of SCD according to Clinical Respiratory Score (CRS) (See Table 1)
- Evaluate for signs and symptoms of shock (See table 2 and 3)

Table 1. Clinical Respiratory Score

<table>
<thead>
<tr>
<th>Clinical Respiratory Score (CRS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assess</td>
</tr>
<tr>
<td>Respiratory Rate</td>
</tr>
<tr>
<td>< 2 mos < 50</td>
</tr>
<tr>
<td>2-12 mos < 40</td>
</tr>
<tr>
<td>1-5 yrs < 30</td>
</tr>
<tr>
<td>> 5 yrs < 20</td>
</tr>
<tr>
<td>Auscultation</td>
</tr>
<tr>
<td>Good air movement, scattered</td>
</tr>
<tr>
<td>expiratory wheezing, loose</td>
</tr>
<tr>
<td>rales/crackles</td>
</tr>
<tr>
<td>Use of Accessory Muscles</td>
</tr>
<tr>
<td>Mild to no use of accessory</td>
</tr>
<tr>
<td>muscles. Mild to no rections,</td>
</tr>
<tr>
<td>nasal flaring on inspiration</td>
</tr>
<tr>
<td>Mental Status</td>
</tr>
<tr>
<td>Normal to mildly irritable</td>
</tr>
<tr>
<td>Room Air SpO2</td>
</tr>
<tr>
<td>Color</td>
</tr>
</tbody>
</table>

(Add score from all rows to calculate total CRS score)
Table 2.
PALS Adjusted Vital Signs for Septic Shock

<table>
<thead>
<tr>
<th>Age</th>
<th>Heart Rate</th>
<th>Resp Rate</th>
<th>Systolic BP</th>
<th>Temp (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0d - 1m</td>
<td>> 205</td>
<td>> 60</td>
<td>< 60</td>
<td><36 or >38</td>
</tr>
<tr>
<td>> 1m - 3m</td>
<td>> 205</td>
<td>> 60</td>
<td>< 70</td>
<td><36 or >38</td>
</tr>
<tr>
<td>> 3m - 1y</td>
<td>> 190</td>
<td>> 60</td>
<td>< 70</td>
<td><36 or >38.5</td>
</tr>
<tr>
<td>> 1.5 - 2y</td>
<td>> 190</td>
<td>> 40</td>
<td>< 70 + [age in yr x 2]</td>
<td><36 or >38.5</td>
</tr>
<tr>
<td>> 2 - 4y</td>
<td>> 140</td>
<td>> 40</td>
<td>< 70 + [age in yr x 2]</td>
<td><36 or >38.5</td>
</tr>
<tr>
<td>> 4 - 6y</td>
<td>> 140</td>
<td>> 34</td>
<td>< 70 + [age in yr x 2]</td>
<td><36 or >38.5</td>
</tr>
<tr>
<td>> 6 - 10y</td>
<td>> 140</td>
<td>> 30</td>
<td>< 70 + [age in yr x 2]</td>
<td><36 or >38.5</td>
</tr>
<tr>
<td>> 10y - 13y</td>
<td>> 100</td>
<td>> 30</td>
<td>< 90</td>
<td><36 or >38.5</td>
</tr>
<tr>
<td>> 13</td>
<td>> 100</td>
<td>> 16</td>
<td>< 90</td>
<td><36 or >38.5</td>
</tr>
</tbody>
</table>

- Consider obtaining blood cultures if concerned for infectious pathology.
- Consider obtaining type and screen if concerned for need for transfusion

Diagnostic Imaging Studies:
- Obtain a chest radiograph if patient has respiratory symptoms at presentation to the hospital or during admission. Fever in the absence of these symptoms does not necessitate evaluation with a chest radiograph.

Table 3.
Signs and Symptoms of Shock

<table>
<thead>
<tr>
<th>Sign and/or Symptom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peripheral Pulses</td>
</tr>
<tr>
<td>Decreased or weak Bounding</td>
</tr>
<tr>
<td>Capillary refill</td>
</tr>
<tr>
<td>≥ 3 sec Flash (< 1 sec)</td>
</tr>
<tr>
<td>Skin</td>
</tr>
<tr>
<td>Mottled, cool Flushed, ruddy, erythoderma (other than face) Petechiae below the nipple, any purpura</td>
</tr>
<tr>
<td>Mental status</td>
</tr>
<tr>
<td>Decreased, irritability, confusion inappropriate crying or drowsiness, poor interaction with parents, lethargy, diminished arousability, obtunded</td>
</tr>
</tbody>
</table>

Laboratory Tests:
- Obtain a complete blood count with reticulocyte count and note changes in baseline CBC or reticulocyte count or any laboratory abnormalities (such as increasing creatinine, liver function tests, coagulation abnormalities, etc.)

Critical Points of Evidence

Evidence Supports
- Collect complete blood count with differential, platelet count, reticulocyte count initially and daily for the patient with acute chest syndrome until the patient is improving. Results should be compared to the patient’s baseline values. (4-7) – Strong recommendation, low quality evidence
- Collect secretory phospholipase A2 (sPLA2) levels for the suspicion of acute chest syndrome when the lab becomes available at Texas Children’s Hospital. (7) – Strong recommendation, low quality evidence
- Obtain a chest radiograph if patient has cough, chest pain, hypoxemia, or lower respiratory symptoms at presentation to the hospital or during admission. Fever in the absence of these symptoms does not necessitate evaluation with a chest radiograph. (8-12) – Strong recommendation, very low quality evidence
- Encourage oral fluid intake and to administer total fluid intake (intravenous plus oral) at maintenance rate to encourage that the patient remains euvoletic. (13) – Strong recommendation, very low quality evidence
- Transfuse the patient with acute chest syndrome with PRBCs to a hemoglobin goal of 9-10 g/dL. (14, 15) – Strong recommendation, very low quality evidence
- Use continuous pulse oximetry monitoring in patients with sickle cell disease who experiencing vaso-occlusive crisis who are being treated in the emergency center. (16-22) – Strong recommendation, very low quality evidence
- Encourage incentive spirometry in patients with sickle cell disease at risk for or with acute chest syndrome who are admitted to the hospital. (23-28) – Strong recommendation, low quality evidence
- Administer inhaled bronchodilators every 6 to eight hours with acute illness if patient has a history of asthma or presents with wheezing. (23-28) – Strong recommendation, very low quality evidence
- Administer a one week course of prednisolone or three days of dexamethasone to patients who have clinical wheezing with or without a known history of asthma who are being treated in the inpatient setting. (27-31) – Strong recommendation, very low quality evidence
- Administer ketorolac in patients with mild to moderate pain. (32-34) – Strong recommendation, very low quality evidence
- Administer ketorolac as adjuvant therapy while initiating morphine via patient controlled analgesia for patients with severe pain (pain scores greater than seven). (32-34) – Strong recommendation, very low quality evidence
Administer intranasal fentanyl or oral morphine for pain control in patients when there is a delay in IV placement. – Strong recommendation, low quality evidence

Try any non-pharmacologic intervention to help control pain. – Strong recommendation, low quality evidence

Use a high basal dose with a low on demand (intermittent opioid infusion) morphine via patient controlled analgesia in patients who present with pain crisis. Titrate depending on patient’s pain control as determined by patient self-report of pain score. Once patient has achieved good control, wean until patients intravenous opioid dose can be transitioned to an oral dose. – Strong recommendation, low quality evidence

Evidence Against

Avoid corticosteroids unless indicated. – Strong Recommendation with Very Low Quality Evidence

Evidence Lacking/Inconclusive

- Strong Consensus Recommendation to progress to intrapulmonary percussive ventilation (IPV) or vest therapy if patient appears to be worsening.
- Use of a risk score to predict health care utilization. – Unable to make a recommendation
- Using functional pain scales as compared to traditional pain scales to assess pain in children – Unable to make a recommendation
- Strong Consensus Recommendation to administer antibiotics of symptoms suggest acute chest or if the patient has worsening respiratory distress.

NOTE: The references cited represent the entire body of evidence reviewed to make each recommendation.

Condition-Specific Elements of Clinical Management

Consults/Referrals:
- Consult Pulmonary Service prior to discharge for CRS ≥ 5
- Consult Critical Care Medicine for CRS ≥ 4
- Consider Pain Service consult for: child hospitalized ≥ 3 days with no clinical improvement, avascular necrosis, unmanageable side effects from PCA, failure to control pain after titrating up and trying other agents, or complicated pain history
- Consider Child Life request to see for coping concerns and/or procedural preparations

Discharge Criteria:
- Improved pulmonary symptoms and documentation of adequate oxygenation on room air
- Afebrile ≥ 24 h and negative cultures for ≥ 24-48 h, if applicable
- Stable hemoglobin/hematocrit
- Taking adequate oral fluids and able to take PO medications, if applicable
- Adequate pain relief with oral analgesics, if applicable
- Slow wean from steroids (over 7-10 days), if applicable
- Home care agencies notified as needed

Caregiver understands:
- Discharge care, including steroid wean, if applicable
- When Hematology Clinic and Pulmonary SCD Clinic follow-ups scheduled
- How and when to use IS
- Medications and how to obtain them

Measures

Structure
- Availability of sPLA2 laboratory testing

Process
- Order set utilization in the EC and inpatient units
- Documentation of CRS scores every 4 hours
- Incidence of pulmonary treatments
- Length of time on oxygen
- Frequency of ambulation
- Time to PCA initiation
- Percent of patients with CRS ≥ 5 referred to pulmonary clinic
- Percent of patients/caregivers who received IS and IS education
- CRS score of patients transferred to PCU/PICU
- Percent of patients with documented RT consult upon arrival to unit

Outcome
- Number of patients who develop ACS
- Number of simple blood transfusions
- Number of exchange transfusions
- Number of patients transferred to the PCU or PICU
- ED and IP LOS
- Time on opioid
- Total PCA morphine dose
- Number of patients with ACS with identified pathogen
- Number of patients with unscheduled return visit to the ED/triage and/or admission for the same diagnosis within 14 days of discharge
Texas Children’s Hospital Evidence-Based Outcomes Center
Sickle Cell Disease Respiratory Management Algorithm

Begin

- Assess CRS q 4 h
- If actively wheezing, place on RAMP protocol
- If rates/crackles AND history of asthma, place on RAMP protocol
- IS in pts ≥ 5 years as follows: 10 breaths IS and 10 breaths PEP alternating q 2 h between 8a and 10p; in pts < 5 years, PEP and/or IS can be introduced, but lack of cooperation should lead to earlier consideration of vest therapy
- CXR if cough, chest pain, hypoxemia, or any lower respiratory symptoms present or develop

Does the patient meet ACS Criteria?

No

- If febrile, give ceftriaxone injection: 50 mg/kg IV for 30 min (MAX: 2 g/day)
- IV fluids should be given at no more than maintenance
- Consider transfer to PICU w/ COM consult
- Vital signs q 2 h
- Continuous pulse oximetry (goal SpO₂ of 92% unless ACS is suspected)
- Is beta haemolytic: Transfuse to Hb goal of 9-10 g/dL
- If pt < 5 yrs:
 - Vent TID ≥ 10 kg
 - Vent or IPV TID (vent preferred if wheezing)
- If wheezing:
 - Methylprednisolone: 1 mg/kg dose IV q 12 h (MAX: 80 mg/DAY)

Yes

- Initiate ceftriaxone injection: 50 mg/kg IV for 30 min (MAX: 2 g/day) in the ED/Outpatient Hematology Center and continue q 24 hours
- NOTE: if pt is allergic to penicillin/cephalosporin, substitute clindamycin: 10 mg/kg/dose IV q 6-8 h (MAX: 900 mg/dose)
- Administer azithromycin: 10 mg/kg PO on day 1 (MAX: 500 mg/dose), then 5 mg/kg PO once daily (MAX: 250 mg/dose) for 4 days (erythromycin may be substituted)
- For severe illness, consider adding vancomycin:
- for children > 15 kg: 5 mg/kg/dose IV q 6 h
- for children ≤ 70 kg: 1 gram IV q 2 h
- If signs of fluid overload, consider furosemide 0.5 mg/kg IV X 1 dose (MAX: 40 mg/dose)
- IV fluids should be given at no more than maintenance
- Repeat CXR if signs and symptoms are worsening
- CXR if cough, chest pain, hypoxemia, or any lower respiratory symptoms present or develop

Assess CRS and manage patient based on score

CRS < 2
- Vital signs q 4 h
- Continuous pulse oximetry (goal SpO₂ of 92% unless ACS is suspected)
- Transfuse to Hb goal of 9-10 g/dL
- If pt < 5 yrs:
 - Vent TID ≥ 10 kg
 - Vent or IPV TID (vent preferred if wheezing)
- If wheezing:
 - Methylprednisolone: 1 mg/kg dose IV q 12 h (MAX: 80 mg/DAY)

CRS 2-3
- Consider transfer to PICU w/ COM consult
- Vital signs q 2 h
- Continuous pulse oximetry (goal SpO₂, unless ACS is suspected)
- Transfuse to Hb goal of 9-10 g/dL
- IPV or vent therapy every 4 hours (vent preferred if wheezing)
- Consider BiPAP
- If wheezing:
 - Methylprednisolone: 1 mg/kg dose IV q 6 h (MAX: 80 mg/DAY)

CRS 4
- Transfer to PICU or PICU (consider management in PICU if history of previous ACS episode w/ exchange transfusion)
- Consult Pulmonary Service prior to discharge
- Vital signs every 2 hours
- Continuous pulse oximetry (goal SpO₂, unless ACS is suspected)
- Transfuse to Hb goal of 9-10 g/dL
- Consider exchange transfusion to 10 g/dL
- BiPAP + IPV q 4 h (may use vest instead of IPV, if wheezing)
- If wheezing or rales/crackles:
 - Methylprednisolone: 1 mg/kg dose IV q 6 h (MAX: 80 mg/DAY)

CRS 5
- Manage in PCU
- Continuous pulse oximetry (goal SpO₂, unless ACS is suspected)
- Consult Pulmonary Service prior to DC
- Perform exchange transfusion (NOTE: Remove venous catheters as soon as possible after exchange transfusion)
- BiPAP + IPV q 4 h (may use vest instead of IPV, if wheezing)

CRS ≥ 6
- Follow-up considerations

For more severe cases of Acute Chest Syndrome, make follow-up appointment in joint Hem/Pulm clinic.

Follow-up considerations

<table>
<thead>
<tr>
<th>Clinical Respiratory Score (CRS)</th>
<th>Score 0</th>
<th>Score 1</th>
<th>Score 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respiratory Rate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-12 mos: 30-40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-2 yrs: < 30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 yrs: > 30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Auscultation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Good or scattered</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respiratory wheezing, no rales/crackles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depressed air movement, inspiratory wheezes or rales/crackles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infiltrates or absent breath sounds, severe wheezing, or rales/crackles, or marked prolonged expiration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use of Accessory Muscles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mild to no use of accessory muscles, mild to no retractions, no nasal flaring on inspiration</td>
<td>Moderate intercostal retractions, mild to moderate use of accessory muscles, nasal flaring</td>
<td>Severe intercostal and subcostal retractions, nasal flaring</td>
<td></td>
</tr>
<tr>
<td>Mental Status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal to mildly irritable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irritable, agitated, restless</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lethargic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heart Rate (BPM)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90-95%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 90%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Color</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pale to normal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyanotic, dusky</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Add score from all rows to calculate total CRS score)
TCH Evidence-Based Outcomes Center
Emergency Department/Outpatient Hematology Center
Pain Management Algorithm for Patients With Sickle Cell Disease in Vaso-Occlusive Crisis

Begin

Child with sickle cell disease presents with persistent pain* (Notify Hematology Clinic or Hematology Fellow on call after initial assessment)

Mild pain (score 1-3)

Patient pain moderate to severe?

Yes

Moderate/Severe pain (score 4-10)

NS bolus followed by 1 ½ x maintenance, unless ACS is suspected
- Apply warm packs to painful areas
- Depending on severity of pain, if patient on home opioids, escalate 15-25% of home medication equivalent
- Morphine 0.1 – 0.2 mg/kg/dose (MAX: 8 mg) IV
- Ketorolac 1 mg/kg for first dose, then 0.5 mg/kg every 6 h not to exceed 5 days (MAX: 30 mg/dose)
 (NOTE: avoid use of ketorolac in pts w/ renal dysfunction, ARF, ESRD, or SO2 > 2 x baseline, or active bleeding)
- Assess pain 30 min after administration of ketorolac

NOTE: If pain ≥ 4 - and unable to access IV within 15 minutes - consider administering oral morphine or intranasal fentanyl

Narcotic given at home within last 12 h?

Yes

Pain well controlled

No

Patient received total of 3 doses morphine?

Yes

Repeat morphine 0.1 – 0.2 mg/kg/dose IV q 10 min (MAX: 8 mg)*

No

Initiate morphine PCA:
- Loading dose 0.1 mg/kg (MAX: 8 mg)
- Basal rate 0.02 mg/kg/hour
- Intermittent dose 0.035 mg/kg (MAX: 8 mg)
- Lockout interval 10 min
- 4-hour limit 0.5-0.75 mg/kg
- IV fluids 1 ½ x maintenance, unless ACS is suspected
- Initiate bowel regimen

Initiate bowel regimen

No

Pain remains well controlled?

Yes

Observe for 20 min - 1 h in ED

No

Pain remains well controlled?

Yes

Give dose of oral morphine (0.2-0.5 mg/kg) and observe for at least 30 min in ED

No

Pain remains well controlled?

Yes

Pain remains well controlled?

Yes

Discharge on oral morphine (0.2-0.5 mg/kg) (alternate w/bupropen)
- Emphasize fluid intake
- Give SCD discharge instruction sheet
- Instruct patient to follow up in clinic in 3-5 days

No

Discharge on oral morphine (0.2-0.5 mg/kg) (alternate w/bupropen)
- Emphasize fluid intake
- Give SCD discharge instruction sheet
- Instruct patient to follow up in clinic in 3-5 days

* Administer IV antibiotics if the patient is ill-appearing, toxic-appearing, bacteremic, or has a significantly elevated white count. Refer to the septic shock guideline if suspicion of shock. Be cautious with fluid management if concern for acute chest syndrome.

- Admit
- Notify PCP

© Evidence-Based Outcomes Center
Texas Children’s Hospital

DATE: July 2017
TCH Evidence-Based Outcomes Center
Sickle Cell Disease in Vaso-Occlusive Crisis Inpatient Pain Management Algorithm

Begin

Child w/ SCD presents with persistent pain; consider nonpharmacologic methods to complement medication?

Patient pain moderate to severe?

Mild Pain (score 1-3)

Continue/Initiate oral ibuprofen or IV ketorolac 1 mg/kg (or first dose, then 0.5 mg/kg every 6 h not to exceed 5 days (MAX: 30 mg/dose)

NOTE: Avoid use in pts w/ renal dysfunction, ARF, ESRD, or SCr > 2 x baseline, or active bleeding

Assess pain 30 min after administration of ketorolac

Pain well controlled?

Yes

Continue pain assessment per standard

No

Continue pain assessment per standard

Pain well controlled?

Yes

Consider Oral or PCA morphine

Oral morphine: 0.2 to 0.5 mg/kg Q 3-4 hours

Initiate morphine PCA:

Loading dose (mg/kg) – 0.1 (MAX: 8 mg)

Basal rate (mg/kg/h) – 0.02 (MAX: 8 mg)

Intermittent dose (mg/kg) – 0.035 (MAX: 8 mg)

Lockout interval (min) – 10

4-hour limit (mg/kg) – 0.5-0.75 IV fluids 1 ½ x maintenance, unless ACS is suspected

Initiate bowel regimen

Assess pain 30 min after administration of ketorolac

Pain well controlled?

Yes

Continue pain assessment per standard

No

Continue pain assessment per standard

Pain well controlled?

Yes

Consider consulting Pain Service

Consult Pain Service

After 30 min, if pain uncontrolled, increase continuous dose by 0.01 mg/kg/h and reassess every 30 min X 2

Yes

No

After 30 min, if pain uncontrolled, increase continuous dose by 0.01 mg/kg/h and reassess every 30 min X 2

Not well controlled?

No

Pain well controlled?

Yes

Increase intermittent dose by 20% (MAX: 8 mg) if pt < 50 kg; MAX: 10 mg if ≥50 kg and reassess every 15 min X 2

No

Pain remains well controlled?

Yes

Consider consulting Pain Service for:

- child hospitalized ≥3 days w/ no clinical improvement
- Avascular Necrosis (AVN)
- unmanageable side effects from PCA
- failure to control pain after titrating up and trying other agents
- complicated pain history

July 2017

© Evidence-Based Outcomes Center
Texas Children’s Hospital

NOTE: If child on home opioids, give current home medication equivalents; convert and escalate, or continue

- If patient is unable to tolerate morphine, use dinaudid IV PCA at standard 1:10 conversion

NOTE: Replace ketorolac w/ oral ibuprofen after 5 days, if needed

NOTE: Rebalance opioid dose every 24 h

NOTE: IVFs + PO intake should equal 1 ½ x maintenance, unless ACS is suspected. Wean IVFs according to patient oral intake.

Instructions for opioid weaning:

- If pt's PCA demands are ½ of actual dose available, consider switching pt to oral meds (long-acting for basal, short-acting for bolus)
- If pt's condition improving and FLACC score has improved ≥2 measurements over 2 shifts, titrate down from continuous to long-acting
- Assess need for PCA every 24 h

Begin DC planning
DC on oral ibuprofen q8h for 5 days

Begin DC planning
See below for instructions on opioid weaning

Begin DC planning
See below for instructions on opioid weaning

Consider consulting Pain Service for:

- child hospitalized ≥3 days w/ no clinical improvement
- Avascular Necrosis (AVN)
- unmanageable side effects from PCA
- failure to control pain after titrating up and trying other agents
- complicated pain history

July 2017

© Evidence-Based Outcomes Center
Texas Children’s Hospital

NOTE: If child on home opioids, give current home medication equivalents; convert and escalate, or continue

- If patient is unable to tolerate morphine, use dinaudid IV PCA at standard 1:10 conversion

NOTE: Replace ketorolac w/ oral ibuprofen after 5 days, if needed

NOTE: Rebalance opioid dose every 24 h

NOTE: IVFs + PO intake should equal 1 ½ x maintenance, unless ACS is suspected. Wean IVFs according to patient oral intake.

Instructions for opioid weaning:

- If pt's PCA demands are ½ of actual dose available, consider switching pt to oral meds (long-acting for basal, short-acting for bolus)
- If pt's condition improving and FLACC score has improved ≥2 measurements over 2 shifts, titrate down from continuous to long-acting
- Assess need for PCA every 24 h

Begin DC planning
DC on oral ibuprofen q8h for 5 days

Begin DC planning
See below for instructions on opioid weaning

Begin DC planning
See below for instructions on opioid weaning

Consider consulting Pain Service for:

- child hospitalized ≥3 days w/ no clinical improvement
- Avascular Necrosis (AVN)
- unmanageable side effects from PCA
- failure to control pain after titrating up and trying other agents
- complicated pain history

July 2017

© Evidence-Based Outcomes Center
Texas Children’s Hospital
References

Clinical Standards Preparation
This clinical standard was prepared by the Evidence-Based Outcomes Center (EBOC) team in collaboration with content experts at Texas Children’s Hospital. Development of this clinical standard supports the TCH Quality and Patient Safety Program initiative to promote clinical standards and outcomes that build a culture of quality and safety within the organization.

Sickle Cell in Vaso-occlusive Crisis Content Expert Team
Adenike Adekunle-Ojo, MD, MPH—Emergency Center
Angela Baldonado, RN—Nursing, West Campus
Rachel Beatty, PharmD—Pharmacy
Julienne Brackett, MD—Cancer Center
Corrie Chumpitazi, MD—Emergency Center
Hiliary Cloyd, RN—Anesthesiology
Danielle Coleman, MS, CCLS—Child Life
Anna Foy, RN—Cancer Center
Alex George MD, PhD—Hematology Center
Tara Haworth, PharmD—Pharmacy
Melody Hellstien, DNP, RN, PPCNP-BC—Cancer Center, Palliative Care
Joy Hesselgrave, MSN, RN, CNS—Cancer Center
Suzanne Iniguez, RT—Respiratory Care
Grace Kao, PhD—Psychology, Pain Service
Julie Katkin, MD—Pulmonology
Sara Liechti, PharmD—Pharmacy
Evelyn Monico, MD—Anesthesiology
Brady Moffett, PharmD, MPH—Pharmacy
Mandy Owens, RN—Cancer Center, West Campus
Satid Thammasittiboon, MD, MHPE—Critical Care Medicine
Jennifer Tran, DO—Cancer Center
Nhidy Varghese, MD—Pulmonary
Amber Yates, MD—Hematology Center

EBOC Team
Andrea Jackson, MBA, RN, CCRN-K, Research Specialist
Sheesha Porter, MS, RN, CNOR, Research Specialist
Christina Davidson, MD, Associate Medical Director
Anne Dykes, MSN, RN, ACNS-BC, Assistant Director
Binita Patel, MD, Medical Director

Development Process
This clinical standard was developed using the process outlined in the EBOC Manual. The literature appraisal documents the following steps:

1. Review Preparation
 - PICO questions established
 - Evidence search confirmed with content experts

2. Review of Existing External Guidelines
 - Sickle Cell Disease: Managing acute painful episodes in hospital (National Institute for Clinical Excellence) 2012

3. Literature Review of Relevant Evidence
 - Searched: PubMed, Cochrane, CINAHL, Guidelines Clearinghouse, Google Scholar

4. Critically Analyze the Evidence
 - Three meta-analyses, fifteen randomized controlled trials, and thirty-seven nonrandomized studies

5. Summarize the Evidence
 - Materials used in the development of the guideline, evidence summary, and order sets are maintained in a vaso-occlusive crisis in sickle cell disease evidence-based review manual within EBOC.

Evaluating the Quality of the Evidence
Published clinical guidelines were evaluated for this review using the AGREE II criteria. The summary of these guidelines are included in the literature appraisal. AGREE II criteria evaluate Guideline Scope and Purpose, Stakeholder Involvement, Rigor of Development, Clarity and Presentation, Applicability, and Editorial Independence using a 4-point Likert scale. The higher the score, the more comprehensive the guideline.

This clinical standard specifically summarizes the evidence in support of or against specific interventions and identifies where evidence is lacking/inconclusive. The following categories describe how research findings provide support for treatment interventions. “Evidence Supports” provides evidence to support an intervention “Evidence Against” provides evidence against an intervention. “Evidence Lacking/Inconclusive” indicates there is insufficient evidence to support or refute an intervention and no conclusion can be drawn from the evidence.

The GRADE criteria were utilized to evaluate the body of evidence used to make practice recommendations. The table below defines how the quality of the evidence is rated and how a strong versus weak recommendation is established. The literature appraisal reflects the critical points of evidence.

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Type of Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRONG</td>
<td>Desirable effects clearly outweigh undesirable effects or vice versa</td>
</tr>
<tr>
<td>WEAK</td>
<td>Desirable effects closely balanced with undesirable effects</td>
</tr>
<tr>
<td>Quality</td>
<td>Type of Evidence</td>
</tr>
<tr>
<td>High</td>
<td>Consistent evidence from well-performed RCTs or exceptionally strong evidence from unbiased observational studies</td>
</tr>
<tr>
<td>Moderate</td>
<td>Evidence from RCTs with important limitations (e.g., inconsistent results, methodological flaws, indirect evidence, or imprecise results) or unusually strong evidence from unbiased observational studies</td>
</tr>
<tr>
<td>Low</td>
<td>Evidence for at least 1 critical outcome from observational studies, RCTs with serious flaws or indirect evidence</td>
</tr>
<tr>
<td>Very Low</td>
<td>Evidence for at least 1 critical outcome from unsystematic clinical observations or very indirect evidence</td>
</tr>
</tbody>
</table>

Recommendations
Practice recommendations were directed by the existing evidence and consensus amongst the content experts. Patient and family preferences were included when possible. The Content Expert Team and EBOC team remain aware of the controversies in the diagnosis/management of vaso-occlusive crisis in children with sickle cell disease. When evidence is lacking, options in care are provided in the clinical standard and the accompanying order sets (if applicable).

Approval Process
Clinical standards are reviewed and approved by hospital committees as deemed appropriate for its intended use. Clinical standards are reviewed as necessary within EBOC at Texas Children’s Hospital. Content Expert Teams are involved with every review and update.

Disclaimer
Practice recommendations are based upon the evidence available at the time the guideline was developed. Clinical standards (guidelines, summaries, or pathways) do not set out the standard of care, and are not intended to be used to dictate a course of care.

Each physician/practitioner must use his or her independent judgment in the management of any specific patient and is responsible, in consultation with the patient and/or the patient family, to make the ultimate judgment regarding care.
<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 2011</td>
<td>Original guideline</td>
</tr>
<tr>
<td>July 2017</td>
<td>Full update</td>
</tr>
<tr>
<td>Sept 2021</td>
<td>Revise Signs and Symptoms of Shock Table</td>
</tr>
</tbody>
</table>