Primary Spontaneous Pneumothorax (PSP) Evidence-Based Guideline

Definition: Pneumothorax refers to air in the pleural cavity (i.e., interspersed between the lung and the chest wall). Primary spontaneous pneumothorax (PSP) occurs in otherwise healthy patients; secondary pneumothorax is associated with underlying lung disease. (1-4)

Etiology: Anatomical abnormalities have been demonstrated, even in the absence of overt underlying lung disease. (2) Smoking has been implicated in the etiology of PSP.

Inclusion Criteria
- Initial or recurrent spontaneous pneumothorax in otherwise healthy patients

Exclusion Criteria
- Underlying chronic lung disease
- Explained pneumothorax (e.g., traumatic, iatrogenic, or resulting from birth)
- Pregnant women

Differential Diagnosis
- Tension pneumothorax
- Secondary spontaneous pneumothorax
- Traumatic pneumothorax

Diagnostic Evaluation

History: Assess for
- Abrupt onset when at rest or with minimal exertion
- Exclusion of explained pneumothorax

Physical Examination
- Chest pain
- Dyspnea
- Asymmetric lung expansion
- Diminished breath sounds
- Hyperresonance on percussion
- Sweating, tachypnea, tachycardia

Evidence Supports
- Utilize inspiratory chest x-ray to detect and diagnose primary spontaneous pneumothorax. (1-16) – Strong recommendation, moderate quality evidence
- Obtain a CT for recurrent (>1) pneumothorax or suspected underlying lung pathology, or for surgical planning if persistent air leak >4 days. (5-16) – Strong recommendation, very low quality evidence
- Observe patients with a small pneumothorax and administer oxygen. Obtain a chest x-ray at 4-6 hours and if no progression of size, remove oxygen and consider discharging the patient, if the patient no longer requires oxygen and is on room air. If the pneumothorax has increased in size at the time of the subsequent chest x-ray, insert a pigtail catheter or chest tube. (1-4,10,13,15,17-30) – Strong recommendation, very low quality evidence
- Insert a pigtail catheter or chest tube for patients with a large pneumothorax. (1,3,10,13,14,17-30) – Strong recommendation, very low quality evidence
- Perform surgical intervention for patients with a recurrent pneumothorax or persistent air leak >4 days. (1-3,5,10,13,14,17-30) – Strong recommendation, very low quality evidence
- Consider surgical intervention for patients with blebs/bullae on CT, if obtained. (10,13,14,17-30) – Weak recommendation, very low quality evidence
- Consider bilateral surgical intervention if contralateral blebs/bullae are detected. (10,13,14,17-30) – Weak recommendation, very low quality evidence
- Insert a pigtail catheter vs. a chest tube to minimize patient discomfort. (1,2,26,32-39) – Strong recommendation, very low quality evidence
- Provide supervision for learners inserting a chest tube or pigtail catheter. (33,40-42) – Strong recommendation, very low quality evidence

Evidence Lacking/Inconclusive
- Manage each pneumothorax independently in the case of bilateral pneumothoraces. – Consensus recommendation
- Position the patient in a supine position when inserting a pigtail catheter/ chest tube. – Consensus recommendation
- Utilize chest x-ray to confirm adequate placement of a pigtail catheter/ chest tube. (33) – Consensus recommendation
- Administer oxygen via non-rebreather mask on initial diagnosis. If no further intervention is needed, transition to nasal cannula. – Consensus recommendation
- Remove the pigtail catheter/ chest tube in a staged manner once a chest x-ray demonstrates complete resolution and there is no clinical evidence of air leak. Any suction should be discontinued. (1,2,33) – Consensus recommendation

NOTE: The references cited represent the entire body of evidence reviewed to make each recommendation.
Condition-Specific Elements of Clinical Management

Admission Criteria
- Significant chest pain
- Oxygen requirement
- Respiratory distress (tachypnea, dyspnea, retractions)
- Need for chest tube placement

Discharge Criteria
- Afebrile
- Oxygen saturations >90% on room air
- Resolution of chest pain and/or respiratory distress
- Stable or resolving small pneumothorax by chest X-ray
- Removal of chest tube with normal/stable chest X-ray

Consults/Referrals
Consult surgery after radiologic confirmation of PSP.

Follow-Up Care
Outpatient visit with Surgery within 3 weeks

Measures

Process
- CXR vs. CT as initial diagnostic study
- Placement of chest tube by IR vs. surgery
- Chest tube requirement for patients who were initially only observed

Outcome
- “Immediate” recurrence after chest tube removal
- Length of stay
- Readmission for chest pain or dyspnea
- Ipsilateral recurrence within 30 days
Inclusion Criteria:
- Initial or recurrent spontaneous pneumothorax in otherwise healthy patients

Exclusion Criteria:
- Underlying chronic lung disease, explained pneumothorax (e.g., traumatic, iatrogenic, or resulting from birth)

Begin^ Spontaneous pneumothorax confirmed by inspiratory chest x-ray

Yes
- Administer oxygen via non-rebreather mask
- Consult surgery

No
OFF algorithm

Recurrent (>1) pneumothorax or suspected underlying lung pathology

Yes
- Obtain a non-contrast CT, if clinically indicated
- If suspected underlying lung pathology, consult pulmonary

No

Small*
- Assess size* and degree of clinical compromise.
- If bilateral pneumothoraces, manage each pneumothorax independently

Large*
- Insert a pigtail catheter (preferred) or chest tube
- Confirm adequate placement with chest x-ray

Progression of size

Yes
- Insert a pigtail catheter (preferred) or chest tube
- Confirm adequate placement with chest x-ray

No
- Remove the catheter in a staged manner once a chest x-ray demonstrates complete resolution and there is no clinical evidence of air leak.
- Manage as appropriate to clinical findings

Large* The size of the pneumothorax is less important than the degree of clinical compromise.
For children >12 years, a pneumothorax is considered 'large' based on the following measurements:
- Measurement of the vertical distance between the lung and thoracic cage at the apex (a); if ≥3 cm, pneumothorax is large
- Measurement of the distance between the lateral lung edge and chest wall at the level of the hilum (b); if >2 cm, pneumothorax is large

*If tension pneumothorax is suspected at any time, notify emergency medicine and surgery attendings. If unstable, perform needle thoracostomy.

Small* The size of the pneumothorax is less important than the degree of clinical compromise.
For children >12 years, a pneumothorax is considered 'large' based on the following measurements:
- Measurement of the vertical distance between the lung and thoracic cage at the apex (a); if ≥3 cm, pneumothorax is large
- Measurement of the distance between the lateral lung edge and chest wall at the level of the hilum (b); if >2 cm, pneumothorax is large

References

4. The Royal Children's Hospital Melbourne. Primary spontaneous pneumothorax.

Clinical Standards Preparation
This clinical standard was prepared by the Evidence-Based Outcomes Center (EBOC) team in collaboration with content experts at Texas Children’s Hospital. Development of this clinical standard supports the TCH Quality and Patient Safety Program initiative to promote clinical standards and outcomes that build a culture of quality and safety within the organization.

Primary Spontaneous Pneumothorax Content Expert Team
Danny Castro, MD, Critical Care Medicine
Julia Lawrence, RT, Respiratory Therapy
Monica Lopez, MD, Surgery
Binita Patel, MD, Emergency Medicine
Krista Preissberg, MD, Pediatric Hospital Medicine
Daniel Rubalcava, MD, MSPH, Emergency Medicine
Alan Schlesinger, MD, Radiology
Manuel Silva Carmona, MD, Pulmonary
Elizabeth Wuestner, CS, RN, Emergency Center

EBOC Team
Jennifer Loveless, MPH, Research Specialist
Ellis Arjmand, MD, PhD, MMM, Associate Medical Director
Charles Macias, MD, MPH, Medical Director

Additional EBOC Support
Tom Burke, Research Assistant
Sherin Titus, Research Assistant
Karen Gibbs, MSN/MPH, RN, Research Specialist
Andrea Jackson, MBA, RN, Research Specialist
Sheesha Porter, MS, RN, Research Specialist
Christina Davidson, MD, Associate Medical Director
Anne Dykes, MSN, RN, Assistant Director
Kathy Carberry, MPH, RN, Director

No relevant financial or intellectual conflicts to report.

Development Process
This clinical standard was developed using the process outlined in the EBOC Manual. The literature appraisal documents the following steps:

1. Review Preparation
 - PICO questions established
 - Evidence search confirmed with content experts

2. Review of Existing External Guidelines

3. Literature Review of Relevant Evidence
 - Searched: Cochrane, PubMed, Google

4. Critically Analyze the Evidence
 - 1 randomized controlled trial and 39 nonrandomized studies

5. Summarize the Evidence
 - Materials used in the development of the guideline, evidence summary, and order sets are maintained in primary spontaneous pneumothorax evidence-based review manual within EBOC.

Evaluating the Quality of the Evidence
Published clinical guidelines were evaluated for this review using the AGREE II criteria. The summary of these guidelines are included in the literature appraisal. AGREE II criteria evaluate Guideline Scope and Purpose, Stakeholder Involvement, Rigor of Development, Clarity and Presentation, Applicability, and Editorial Independence using a 4-point Likert scale. The higher the score, the more comprehensive the guideline.

This clinical standard specifically summarizes the evidence in support of or against specific interventions and identifies where evidence is lacking/inconclusive. The following categories describe how research findings provide support for treatment interventions.

“Evidence Supports” provides evidence to support an intervention
“Evidence Against” provides evidence against an intervention
“Evidence Lacking/Inconclusive” indicates there is insufficient evidence to support or refute an intervention and no conclusion can be drawn from the evidence.

The GRADE criteria were utilized to evaluate the body of evidence used to make practice recommendations. The table below defines how the quality of the evidence is rated and how a strong versus weak recommendation is established. The literature appraisal reflects the critical points of evidence.

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Quality</th>
<th>Type of Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRONG</td>
<td>High</td>
<td>Consistent evidence from well-performed RCTs or exceptionally strong evidence from unbiased observational studies</td>
</tr>
<tr>
<td>WEAK</td>
<td>Moderate</td>
<td>Evidence from RCTs with important limitations (e.g., inconsistent results, methodological flaws, indirect evidence, or imprecise results) or unusually strong evidence from unbiased observational studies</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>Evidence for at least 1 critical outcome from observational studies, RCTs with serious flaws or indirect evidence</td>
</tr>
<tr>
<td></td>
<td>Very Low</td>
<td>Evidence for at least 1 critical outcome from unsystematic clinical observations or very indirect evidence</td>
</tr>
</tbody>
</table>

Recommendations
Practice recommendations were directed by the existing evidence and consensus amongst the content experts. Patient and family preferences were included when possible. The Content Expert Team and EBOC team remain aware of the controversies in the diagnosis and management of primary spontaneous pneumothorax in children. When evidence is lacking, options in care are provided in the clinical standard and the accompanying order sets (if applicable).

Approval Process
Clinical standards are reviewed and approved by hospital committees as deemed appropriate for its intended use. Clinical standards are reviewed as necessary within EBOC at Texas Children’s Hospital. Content Expert Teams are involved with every review and update.

Disclaimer
Practice recommendations are based upon the evidence available at the time the clinical standard was developed. Clinical standards (guidelines, summaries, or pathways) do not set out the standard of care, and are not intended to be used to dictate a course of care. Each physician/practitioner must use his or her independent judgment in the management of any specific patient and is responsible, in consultation with the patient and/or the patient family, to make the ultimate judgment regarding care.

Version History
<table>
<thead>
<tr>
<th>Action</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Originally completed</td>
<td>April 2017</td>
</tr>
</tbody>
</table>