Definition: Kawasaki disease (KD), also known as mucocutaneous lymph node syndrome, is an acute, self-limiting vasculitic syndrome of unknown etiology that primarily affects children younger than 5 years of age. (1) First described in Japan in 1967 by Tomisaku Kawasaki, KD is the leading cause of acquired heart disease in children. (2) The most common and dangerous long-term sequelae of KD are coronary artery abnormalities (aneurysms or ectasia) that develop in up to 25% of untreated children and may lead to sudden death or ischemic heart disease. (3) Classic or complete KD is defined by the Centers for Disease Control (CDC) as an illness characterized by fever of 5 or more days duration and the presence of at least 4 of the following 5 clinical criteria: rash; cervical lymphadenopathy (at least 1.5 cm in diameter); bilateral conjunctival injection; oral mucosal changes; and peripheral extremity changes. Incomplete KD is an atypical presentation of Kawasaki disease which should be considered in any infant or child with prolonged unexplained fever, fewer than 4 of the principal clinical findings, and compatible laboratory or echocardiographic findings.

Epidemiology: According to the CDC, the estimated overall annual incidence of KD is approximately 25 per 100,000 children younger than five years in the United States. (2) This information was collected via passive national reporting to the CDC, private insurance databases, or administrative databases (i.e., Pediatric Hospital Information Service). There is prominent ethnic variation in the KD incidence rate for the United States with higher rates among Pacific Islanders and Japanese Americans (30 per 100,000), intermediate among non-Hispanic African Americans (17 per 100,000) and Hispanics (16 per 100,000), and lowest among Caucasians (12 per 100,000). (4) Males are more commonly affected than females, and 90% of the cases occur in children younger than five years. Disease occurrence is most common in winter and early spring in North America.

Etiology: KD is an acute systemic inflammatory disease of unknown etiology. Several theories have attempted to determine whether the source of KD is infectious, genetic or a host immune response. However, none of the etiological agents have been found to be causative. The seasonality of KD is associated with increased incidence in geographic areas and may suggest a transmissible factor. Studies are ongoing to determine the etiology of KD. (5)

Pathophysiology: KD is an acute, self-limiting, multisystem vasculitis. The innate immune system plays a vital role in the pathogenesis of Kawasaki’s disease. Neutrophils are important factors in the initial inflammatory response on coronary artery walls. Recent studies also demonstrate increased expression of innate immunity associated genes during the acute phase of Kawasaki’s disease. (6) Impaired immune regulation has been found to also play a role in pathogenesis of KD as studies of acute and subacute sera from KD patients have shown a decrease in the population of T regulatory cells in the acute phase with normalization following treatment with IVIG. The role of B cells has not been clearly defined; IgA plasma cells have been found in coronary artery lesions from fatal cases of KD. Their specific role is unknown.

Inclusion Criteria
- Patients <18 years of age
- Prolonged febrile illness (≥5 days) in a patient with ≥2 of the principal clinical features of Kawasaki disease.
- Patients with fever and ≥4 principal clinical features
- Infants with fever for ≥7 days without other explanation

Exclusion Criteria
- Patients ≥18 years of age
- Complicating existing diagnoses:
 - Immunologic
 - Rheumatologic disease
 - Major chronic inflammatory diseases
 - Significant congenital heart disease
 - Macrophage activation syndrome (MAS)
- KD shock syndrome (KDSS)
 - A rare, potentially life-threatening complication of KD characterized by systolic hypotension for age, sustained systolic hypotension (decrease in blood pressure ≥20% from baseline) or clinical signs of poor perfusion (7)
 - Laboratory findings
 - Higher levels of inflammatory markers
 - Lower albumin levels
 - Anemia
 - Consumptive coagulopathy
 - Bandemia
 - Hyponatremia
 - Clinical Findings
 - More severe skin rash
 - Myocardial dysfunction
 - More severe coronary artery involvement
 - Poor response to IVIG
 - *If shock is suspected, exit KD guideline/algorithm and treat accordingly (consider Septic Shock Guideline)*

Differential Diagnosis (8)
Infectious and noninfectious conditions:
- Viral infections [*In a child with clinical findings compatible with classic KD, the detection of respiratory viruses such as respiratory syncytial virus, metapneumovirus, coronaviruses, parainfluenza viruses, or influenza viruses does not exclude the diagnosis of KD* (9)]
 - Adenovirus
 - Epstein Barr Virus
 - Influenza
 - Measles
 - Mononucleosis
 - Roseola infantum
 - Rubella
- Bacterial infections
 - Lyme Disease
 - Leptospirosis
 - Meningococemia
 - Retropharyngeal abscess
 - Rocky Mountain Spotted Fever
 - Staphylococcal infection (e.g., Staphylococcal Scalded Skin Syndrome [SSSS]; Toxic Shock Syndrome [TSS])
 - Streptococcal infection (e.g., rheumatic fever, scarlet fever, TSS like syndrome)
- Autoimmune disorders
 - Systemic juvenile rheumatoid arthritis
 - Systemic lupus erythematosus
- Multi-organ system disorders
 - Infantile Polyarteritis Nodosa
- Drug hypersensitivity reactions
 - Stevens-Johnson Syndrome (SJS)
 - Toxic Epidermal Necrolysis (TEN)

Diagnostic Evaluation

History: Assess for presence of fever and principal clinical features
- Fever:
 - Onset (>5 days of fever with ≥2 clinical criteria or 4 days with all 5 clinical criteria)
 - Response to antipyretics
 - How high was the temperature (typically high spiking; >39°C to 40°C, remittent)
- Bilateral bulbar conjunctival injection without exudate
- Oral mucous membrane changes, including injected or fissured lips, injected pharynx, or strawberry tongue
- Rash: maculopapular, diffuse erythroderma, or erythema multiforme-like (often worse in groin area)
- Peripheral extremity changes, including erythema and edema of hands and feet (acute phase), and periungual desquamation (convalescent phase)
- Cervical lymphadenopathy (at least one lymph node >1.5 cm in diameter), usually unilateral

History: Assess for other clinical findings
- Cough, increased work of breathing, sore throat
- Vomiting
- Diarrhea
- History of illnesses
- Review of current medications
- Family history of autoimmune disease

Physical Examination
- Vital signs
 - Temperature
 - Heart rate
 - Respiration
 - Blood pressure
 - Oxygen saturations
- Assess for presence of diagnostic criteria:
 - Bilateral bulbar conjunctival injection without exudate
 - Oral mucous membrane changes, including injected or fissured lips, injected pharynx, or strawberry tongue
 - Rash: maculopapular, diffuse erythroderma, or erythema multiforme-like (often worse in groin area)
 - Peripheral extremity changes, including erythema and edema of hands and feet (acute phase), and periungual desquamation (convalescent phase)
 - Cervical lymphadenopathy (at least one lymph node >1.5 cm in diameter), usually unilateral

Supplemental Laboratory Tests

There is no single laboratory test to confirm the diagnosis of KD but certain laboratory findings can assist in the diagnosis of incomplete KD and differentiate KD from other conditions.
- Complete blood counts with differential white blood cell (WBC) counts
 - Leukocytosis is typical during the acute stage of Kawasaki disease with a predominance of immature and mature granulocytes. About 50% have white blood cell counts >15,000/mm³.
 - Anemia may develop with more prolonged active inflammation.
 - Thrombocytosis is rare in the 1st week of illness but may appear in the 2nd week (peaking in the 3rd-4th week) with a mean peak platelet count of ≈ 700,000/mm³.
- Complete metabolic panel
 - Hyponatremia can be noted.
 - Mild to moderate elevations in serum transaminases occur in ≤40% of patients.
 - Mild hyperbilirubinemia can occur in 10% of patients.
 - Hypoalbuminemia is common and is associated with more severe and prolonged acute disease.
- Liver enzymes including aspartate transaminase (AST), alanine transaminase (ALT), and albumin
 - Abnormal results common in patients with acute Kawasaki disease and are associated with IVIG resistance.
- C-reactive protein (CRP)
 - Elevation of CRP is seen but should return to normal by 6-10 weeks after onset of illness.
- Erythrocyte sedimentation rate (ESR)
 - Elevation of acute phase reactants is nearly universal in Kawasaki disease. Elevation of ESR (but no of CRP) can be caused by IVIG therapy; therefore, ESR should not be used as the sole determinant of the degree of inflammatory activity in IVIG-treated patients.
- Urinalysis
 - Urinalysis reveals intermittent mild to moderate sterile pyuria in ≈ 33% of patients. Cells originate in the urethra and a catheterized specimen may not contain these cells.
- D-dimer
 - Elevated D-dimer can signify endothelial damage and fibrinolysis which is associated with systemic vasculitis and may help predict coronary artery involvement

Optional laboratory tests
- Consider obtaining NT-pro BNP
 - Can be used as an adjunctive marker to assist with the diagnosis of patients in the acute phase of Kawasaki disease

Echocardiogram
- Transthoracic echocardiography is highly sensitive and specific for the diagnosis of coronary artery involvement. It is important to ensure that the timing or results of the echocardiogram do not delay initial treatment of Kawasaki disease, and that the diagnosis is made predominantly on clinical findings.
- Echocardiogram is considered positive if any of 3 conditions are met:
 - Z score of LAD or RCA ≥ 2.5
 - Coronary arteries meet criteria for aneurysms
 - 3 other suggestive features exist, including decreased LV function, mitral regurgitation, pericardial effusion, or Z scores in LAD or RCA of 2 - 2.5
- If full criteria are not met and coronary artery abnormalities are present on echocardiography, then the child has incomplete features of Kawasaki disease and treatment with high dose intravenous immunoglobulin should be given.

Electrocardiography (ECG)
- Consider ordering and ECG, especially if the echocardiogram is abnormal.
Critical Points of Evidence*

Evidence Supports

- Patients with complete Kawasaki disease (KD) criteria and those who meet the algorithm criteria for incomplete KD are to be treated with high-dose intravenous immunoglobulin (IVIG) (2 g/kg given as a single intravenous infusion) within 10 days of illness onset but as soon as possible after diagnosis. KD can be diagnosed and treatment initiated on day 4 if all clinical features are present and there is no alternative diagnosis.

 - **Strong recommendation,** moderate quality evidence

 Remarks: Echocardiogram should not delay the initiation of treatment with IVIG.

- Administration of IVIG therapy to patients presenting after the 10th day of illness (i.e., in whom the diagnosis was missed earlier) if they have either persistent fever without other explanation OR coronary artery abnormalities OR ongoing systemic inflammation, as manifested by elevated erythrocyte sedimentation rate (ESR) or C-reactive protein (CRP) >3.0 mg/dL.

 - **Strong recommendation,** moderate quality evidence

- An echocardiogram should be performed within 24 hours of diagnosis of KD but should not delay treatment.

 - **Strong recommendation,** moderate quality evidence

 Remarks: Transthoracic echocardiography is highly sensitive and specific for the diagnosis of coronary artery involvement. It is important to ensure that the timing or results of the echocardiogram do not delay initial treatment of Kawasaki disease, and that the diagnosis is made predominantly on clinical findings.

- For patients who meet the 2017 American Heart Association (AHA) Incomplete Algorithm criteria, an echocardiogram should be obtained within 12 to 24 hours of being ordered but should not delay treatment.

 - **Strong recommendation,** moderate quality evidence

- For patients who do not meet the 2017 AHA Incomplete Algorithm criteria, an echocardiogram should be obtained within 12 hours of being ordered to determine treatment.

 - **Strong recommendation,** moderate quality evidence

 Remarks: If full criteria are not met and coronary artery abnormalities are present on echocardiography, then the child has incomplete features of Kawasaki disease and treatment with high dose intravenous immunoglobulin should be considered.

- For patients who are unable to cooperate enough to obtain a high quality echo, consider sedation.

 - **Weak recommendation,** low quality evidence

 Remarks: Detailed echocardiographic imaging may be compromised for an uncooperative child, therefore sedation is often needed for those patients <3 years of age and may also be required in older, irritable children. If a poor-quality initial echocardiogram is obtained because sedation was not administered, a sedated study should be repeated as soon as possible within the 48 hours after diagnosis and initial treatment. If sedation is needed for the echocardiogram procedure, please refer to the Sedation for Transthoracic Echocardiography.

- For diagnostic echocardiogram for patients with suspected Kawasaki disease assess for significant findings such as, valvular function, biventricular systolic function, presence of pericardial effusion, and presence of pleural effusions.

 - **Strong recommendation,** low quality evidence

- For uncomplicated patients, echocardiography should be repeated at both 1 to 2 weeks and 4 to 6 weeks after initiation of therapy.

 For patients with important and evolving coronary artery abnormalities (Z score >2.5) detected during the acute illness, more frequent echocardiography (at least twice per week) should be performed until luminal dimensions have stopped progressing to determine the risk for and presence of thrombosis.

 - **Strong recommendation,** low quality evidence

- For patients presenting with 2 to 3 AHA clinical criteria and incomplete KD is being considered, obtain erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP), in addition to the American Heart Association/American Academy of Pediatrics (AHA/AAP) recommended laboratory evaluations (complete blood count [CBC] with differential; white blood cell [WBC] count; urinalysis [UA]; preferably clean catch; serum alanine aminotransferase level [ALT]; and serum albumin).

 - **Strong recommendation,** moderate quality evidence

 Remarks: No laboratory studies are included among the diagnostic criteria for typical KD for any guidelines. However, certain findings may support the diagnosis of KD, particularly in incomplete cases. Typical manifestations of systemic inflammation may include elevation of acute-phase reactants (e.g., C-reactive protein [CRP] or erythrocyte sedimentation rate [ESR]), thrombocytosis that generally develops after the seventh day of illness, leukocytosis, and a left-shift (increased immature neutrophils) in the white blood cell (WBC) count.

- For patients presenting with complete KD and to determine the risk of coronary artery involvement, consider obtaining N-terminal pro b-type natriuretic peptide (NT-pro-BNP) and D-Dimer, in addition to AHA/AAP recommended laboratory evaluation (C-reactive protein [CRP]; erythrocyte sedimentation rate [ESR]; complete blood count [CBC] with differential white blood cell [WBC] count; urinalysis [U/A], preferably clean catch; serum alanine aminotransferase level; and serum albumin).

 - **Strong recommendation,** low quality evidence

 Remarks: To consider, in consultation with cardiology and rheumatology, administration of corticosteroids, together with IVIG 2 g/kg and ASA, for treatment of high-risk patients with acute KD.

 - **Weak recommendation,** low quality evidence

- Administration of a second dose of IVIG (2 g/kg) for patients with refractory Kawasaki disease (patients with persistent or recrudescent fever at least 36 hours after the end of the first IVIG infusion without other concerning features, such as coronary abnormalities and/or Kawasaki shock). Consult Rheumatology and/or Cardiology for high risk patients (i.e., patients <1 year of age, the small group who develop early coronary artery changes, and patients with features of hemophagocytic lymphohistiocytosis [HLH], and/or shock).

 - **Strong recommendation,** moderate quality evidence

- To consider performing an echocardiogram and evaluating NT-proBNP in patients younger than 12 months with fever that has lasted longer than 2 days, regardless of the presence or absence of manifestations associated with KD.

 - **Weak recommendation,** low quality evidence

Evidence Against

- Perivascular brightness and distal tapering are not significant echocardiogram findings in the diagnosis of suspected Kawasaki disease.

 - **Strong recommendation,** low quality evidence

- Routine administration of adjunctive corticosteroids with IVIG therapy as routine primary therapy for non-high risk patients with KD.

 - **Strong recommendation,** moderate quality evidence
- Use of the current established Japanese scoring systems to identify high risk patients in the US population (i.e., Kobayashi score, Egami score, and Sano score). *(31,36,96-110) – Strong recommendation, moderate quality evidence

Evidence Lacking/Inconclusive
- Administration of oral aspirin (ASA) upon diagnosis of Kawasaki disease at a dose of 30 to 50 mg/kg/DAY until the patient is afebrile for 72 hours and then transition to 3-5 mg/kg/DAY once daily for 6 to 8 weeks until the echocardiogram demonstrates a lack of coronary artery abnormalities. *(111-121) – Consensus recommendation
- To consider hospital discharge if patients are afebrile for at least 24 hours following IVIG therapy, are clinically improved AND have a normal initial echo. For high risk patients, consider discharge if patients are afebrile for at least 36 hours following IVIG therapy, show clinical improvement AND have a normal initial echo. *(122-125) – Consensus recommendation
- For the patient to return for follow up labs and imaging (echocardiogram) in 7 to 14 days from discharge OR 14 to 21 days from initial fever, whichever occurs sooner. – Consensus recommendation

*NOTE: The references cited represent the entire body of evidence reviewed to make each recommendation.

Condition-Specific Elements of Clinical Management

General
- The goal of therapy is to reduce the systemic and tissue-level inflammation as rapidly as possible. Patients should be treated as soon as the diagnosis is confirmed.
- All patients within the first 10 days of fever onset should be treated with IVIG. Patients diagnosed after 10 days should receive IVIG if they are still febrile, have markedly elevated inflammatory parameters, or have coronary artery dilation.
- Recrudescent fever at least 36 hours after the end of IVIG infusion without other explanation is a marker for persistent inflammation and should prompt immediate and aggressive anti-inflammatory therapy.
- Patients with coronary artery dilation (z-score >2.0) should be followed with a repeat echocardiogram at least twice a week until dimensions stabilize; additional anti-inflammatory therapy should be considered.
- **Acute phase:**
 - Up to 10 days (until resolution of fever)
- **Subacute phase:**
 - 10-25 days (until resolution of disease)
 - Associated with thrombocytosis, ESR, CRP, and skin peeling of hands and feet
 - 20% of untreated patients will have coronary aneurysms
- **Convalescent phase:**
 - >1 month
 - Well-appearing but evolution of coronary dilatation and resolution
 - Increased ESR, CRP, and platelets

Treatment Recommendations:

Initial Treatment
- The primary goal of treatment is the prevention of coronary artery aneurysms, since the etiology is unknown
- Intravenous Immunoglobulin (IVIG)
 - 2g/kg as a single infusion
 - Most benefit when given in first 10 days of illness. There may be benefit even when given up to 60 days later
 - If fever persists, administer a second IVIG infusion
 - Do not check ESR following IVIG administration
- Aspirin
 - Administration of oral aspirin (ASA) upon diagnosis of Kawasaki disease at a dose of 30 to 50 mg/kg/DAY until the patient is afebrile for 72 hours and then transition to 3-5 mg/kg/DAY once daily for 6 to 8 weeks until the echocardiogram demonstrates a lack of coronary artery abnormalities.
- Corticosteroids
 - To consider, in consultation with Cardiology and Rheumatology, administration of corticosteroids, together with IVIG 2 g/kg and ASA, for treatment of high-risk patients with acute KD.

Admission Criteria
- All children with diagnosed or suspected Kawasaki disease should be admitted for inpatient observation.

Discharge Criteria
- Consider hospital discharge once the patient has been afebrile for at least 24 hours following completion of IVIG therapy.
- For high-risk patients, consider longer period of observation (at least 36 hours).
- Echocardiogram completed

Consults/Referrals
- Cardiology
- Rheumatology, if needed

Follow-Up Care
- Patient to return for follow up labs and imaging (echocardiogram) in 7-14 days from discharge OR 14-21 days from initial fever, whichever occurs sooner.
- **Patient/Family education:**
 - Return to EC if fever >38.0°C or recurrence of KD symptoms before follow up with PCP, Cardiology, or Rheumatology
 - Education on side effects of low dose aspirin (i.e., bruising, gastrointestinal bleeding)
 - Patient received inactivated flu vaccine if during flu season; no live vaccines for 11 months
 - Avoid exposure to anyone with the flu or chicken pox to avoid the risk of Reye’s syndrome, which has been linked to aspirin use in these illnesses
 - Recommend a low-fat, heart healthy diet, regular exercise and avoid exposure to secondhand cigarette smoke
 - Physical activity

Measures

Process
- Day of fever that KD diagnosis made
- Day of fever that first dose IVIG administered
- Utilization of steroids
- Utilization of Infliximab
- Utilization of IVIG
- Rate of IVIG resistance
- Rate of comprehensive echocardiogram evaluations and documentation
- Rate of post-hospitalization PCP and specialist follow-up
Outcome

- Length of stay
- Readmissions
- Rate of aneurysms
- Rate of progression of coronary involvement (Z score) on follow-up echocardiogram
- Rate of delayed and/or missed diagnosis
Inclusion Criteria
- Patients < 18 years of age
- Prolonged febrile illness (≥5 days) in a patient with ≥2 of the principal clinical features of Kawasaki disease
- Patients with fever and ≥4 principal clinical features
- Infants with fever for ≥7 days without other explanation

Exclusion Criteria
- Patients ≥18 years of age
- Complicating existing diagnoses: - Immunologic - Rheumatologic disease - Major chronic inflammatory diseases - Significant congenital heart disease - Macrophage activation syndrome (MAS) - KD shock syndrome (KDSS, see below)

History & Physical
- Assess fever onset and duration
- Assess for presence of Kawasaki disease diagnostic criteria
- Consider differential diagnosis (see guideline for list of differential diagnoses)

Assess supplemental laboratory tests
- C-reactive protein (CRP)
- Erythrocyte sedimentation rate (ESR)
- Liver function tests
- D-dimer
- Complete blood count (CBC) with differential white blood cell (WBC) count
- Urinalysis (U/A, clean catch)

Assess optional laboratory tests
- Consider NT-pro BNP

Kawasaki Disease Principal Clinical Features
- Prolonged febrile illness ≥5 days
 - AND ≥2 of the following:
 - Bilateral conjunctival injection
 - Oral mucosal membrane changes (injected or fissured lips, injected pharynx or strawberry tongue)
 - Rash (maculopapular, diffuse erythroderma or erythema multiforme-like)
 - Peripheral extremity changes (erythema and edema of hands and feet; periungual desquamation)
 - Cervical lymphadenopathy (at least one lymph node ≥1.5 cm in diameter), usually unilateral

Diagnosis of Suspected Kawasaki Disease Algorithm

1. **Patient presents with suspected Kawasaki disease (KD)**
 - **Is patient stable?**
 - **YES**
 - **History & Physical**
 - **Assess supplemental laboratory tests**
 - **Assess optional laboratory tests**
 - **NO**
 - **Proceed to Management of Kawasaki Disease Algorithm**

2. **Fever ≥ 5 days duration with ≥4 principal clinical features**
 - **Complete Kawasaki Disease**

3. **Infants with fever for ≥7 days without other explanation**
 - **2017 American Heart Association Incomplete Criteria**
 - Fever ≥5 days duration with 2 to 3 of the principal clinical features
 - CRP ≥3 mg/dL AND/OR ESR ≥40 mm/h
 - **Assess for ≥3 supplemental labs findings:**
 - Leukocytosis (WBC ≥ 15,000/mm³)
 - Anemia for age
 - Thrombocytosis (platelet count ≥ 450.00 after 1st week)
 - Albumin ≤ 3.0 g/dL
 - Elevated ALT
 - Sterile pyuria (urine ≥10 WBC/hpf)
 - **OR**
 - *Order echocardiogram and assess for POSITIVE ECHOCARDIOGRAM FINDINGS (see echocardiogram recommendations below)*
 - **Incomplete Kawasaki Disease**

Echocardiogram
- An echocardiogram should be performed within 24 hours of diagnosis of KD but should not delay treatment. Assess for significant findings such as, valvular function, biventricular systolic function, presence of pericardial effusion, and presence of pleural effusion.
- For patients who meet the 2017 American Heart Association (AHA) Incomplete Algorithm criteria, an echocardiogram should be obtained within 12 to 24 hours of being ordered but should not delay treatment.
- For patients who do not meet the 2017 AHA Incomplete Algorithm criteria, an echocardiogram should be obtained within 12 hours of being ordered to determine treatment.
- For patients who are unable to cooperate enough to obtain a high quality echo, consider sedation. Detailed echocardiographic imaging may be compromised for an uncooperative child, therefore sedation is often needed for those patients ≥3 years of age and may also be required in older, irritable children. If a poor-quality initial echocardiogram is obtained because sedation was not administered, a sedated study should be repeated as soon as possible within the 24 hours after diagnosis and initial treatment. If sedation is needed for the echocardiogram procedure, please refer to the “Sedation for Transthoracic Echocardiogram” guideline.

© Evidence-Based Outcomes Center
Texas Children’s Hospital
Management of Kawasaki Disease Algorithm

1st line Treatment

- High dose IVIG: 2 g/kg single infusion over 12 hours; document IVIG start time and completion time
- Moderate dose aspirin: 30 to 50 mg/kg/DAY until patient is afebrile for 72 hours and then transition to 3-5 mg/kg/DAY once daily for 6 to 8 weeks until the echocardiogram demonstrates a lack of coronary artery abnormalities
- Verify echocardiogram have been done (repeat if abnormal per Cardiology); do not delay therapy while awaiting echo

High risk features present?

Patients less than 1 year of age and the small group who develop early coronary artery changes, features of hemophagocytic lymphohistiocytosis (HLH), and/or shock.

Discharge Instructions

- Patient to return for follow up clinical evaluation, labs and imaging (echocardiogram) in 7 to 14 days from discharge OR 14 to 21 days from initial fever, whichever occurs sooner.
- Parents should monitor their child’s temperature and alert their physician if the child has symptoms of fever.
- Patient should receive inactivated flu vaccine if in season.

Clinical standards are developed for 80% of the patient population with a particular disease. Each practitioner must use his/her clinical judgment in the management of any specific patient.
Appendix A: Kawasaki Disease Terminology *(McCrindle 17, Kanagaye 09)*

Acute phase: Stage which begins with an abrupt onset of fever and lasts approximately 7-14 days. The fever is typically high-spiking and remittent, with peak temperatures ranging from 102-104°F (39-40°C) or higher.

Classic Kawasaki disease: An illness characterized by fever of 5 or more days duration and the presence of at least 4 of the following 5 clinical criteria: rash; cervical lymphadenopathy (at least 1.5 cm in diameter); bilateral conjunctival injection; oral mucosal changes; and peripheral extremity changes.

Convalescent phase: Stage begins when clinical signs disappear and continues until the erythrocyte sedimentation rate becomes normal, usually six to eight weeks after the onset of illness.

Incomplete (Atypical) Kawasaki disease: Atypical presentation of Kawasaki disease which should be considered in any infant or child with prolonged unexplained fever, fewer than 4 of the principal clinical findings, and compatible laboratory or echocardiographic findings.

Intravenous immunoglobulin (IVIG) resistance: Persistent or recrudescent fever at least 36 hours and <7 days after completion of first IVIG infusion.

Kawasaki disease shock syndrome: A rare, potentially life-threatening complication of KD characterized by systolic hypotension for age, sustained systolic hypotension (decrease in blood pressure ≥20% from baseline) or clinical signs of poor perfusion.

Plasma exchange: Therapeutic process to remove large-molecular-weight substances such as harmful antibodies from the plasma. In the case of Kawasaki disease, this process can be considered as a third line therapy in consultation with Rheumatology to remove antibodies which may be causing resistance to disease treatment. It is usually carried out using an automated blood cell separator to ensure fluid balance and maintain a normal plasma volume.

Refractory Kawasaki disease: The development or continuation of fever greater than 36 hours after completion of the IVIG infusion. These patients are at increased risk of developing cardiac abnormalities and will need additional treatment.

Subacute phase: This stage is from the end of the fever to about day 25. During this phase, patients may have desquamation of the fingers and toes, arthritis and arthralgia, and thrombocytosis.

Tumor Necrosis Factor (TNF) α blockers: An inflammatory cytokine that plays an important role in host defense against infections and in immune responses (Fiers 1991). Natural production of TNF-α is protective, but excessive production of TNF-α may be harmful and even lethal to the host. Overproduction of TNF-α has been associated with the chronic inflammation observed in immune-modulated inflammatory disorders, such as Kawasaki disease. It should be considered as third line therapy in consultation with Rheumatology.
References

Clinical Laboratory. 62(10), 1903-1910.

Buonsenso, D., Macchiariolo, G., Supino, M. C., La Penna, F., Scateni, S., Marchesi, A., ... & Boccuzzi, E. (2018). Laboratory biomarkers to facilitate diagnosis in Kawasaki disease present with meases and Kawasaki disease in a pediatric emergency room: A retrospective study. Mediterranean Journal of Hematology and Infectious Diseases, 10(1), e2018033.

Clinical Standards Preparation
This clinical standard was prepared by the Evidence-Based Outcomes Center (EBOC) team in collaboration with content experts at Texas Children’s Hospital. Development of this clinical standard supports the TCH Quality and Patient Safety Program initiative to promote clinical standards and outcomes that build a culture of quality and safety within the organization.

Kawasaki Disease Content Expert Team
Carolyn Altman, MD, Cardiology
John Darby, MD, PHM
Aimee Liou, MD, Cardiology
Huay-ying Lo, MD, PHM
Brent Mothner, MD, PHM
Andrea Ramirez, MD, Rheumatology
Marietta DeGuzman, MD, Rheumatology
Marco Costilla, RN, Asst Clin. Dir Nursing Inpatient
Katherine Lemming, PharmD, Pharmacy
Lucia Marquez, MD, MPH, Infectious Disease
Karla Resendiz Trujano, PharmD, Pharmacy
Brittany Rodriguez, PharmD, Pharmacy
Kristen Sexson Tejtel, MD, PhD, MPH, Cardiology
Vicki Uremovich, MD, PHM

EBOC Team
Sheesha Porter, MSN, RN, CNOR, EBP Specialist
Binita Patel, MD, Chief Medical Quality Officer

Additional EBOC Support
Tom Burke, Research Assistant
Sherin Titus, Research Assistant
Andrea Jackson, MBA, RN, EBP Specialist
Karen Gibbs, MSN/MPH, RN, PHNA-BC, CPN, EBP Specialist
Jennifer Loveless, MPh, RN, EBP Specialist
Anne Dykes, MSN, RN, Assistant Director
Warren Boudreau, MSN, RN, Director

No relevant financial or intellectual conflicts to report.

Development Process
This clinical standard was developed using the process outlined in the EBOC Manual. The literature appraisal documents the following steps:

1. Review Preparation
 - PICO questions established
 - Evidence search confirmed with content experts
2. Review of Existing External Guidelines
 - Kawasaki Disease Clinical Guideline
 - Diagnosis, Treatment and Long-Term Management of Kawasaki Disease
 - Guidelines for medical treatment of acute Kawasaki Disease
 - Management of Kawasaki Disease
 - Kawasaki Disease, Journal of American College of Cardiology
3. Literature Review of Relevant Evidence
 - Searched: PubMed, Medline, CINAHL, and Cochrane
4. Critically Analyze the Evidence
 - 10 meta-analyses, 5 randomized controlled trials, and 105 nonrandomized studies
5. Summarize the Evidence
 - Materials used in the development of the clinical standard, literature appraisal, and any order sets are maintained in a Diagnosis and Management of Kawasaki Disease evidence-based review manual within EBOC.

Evaluating the Quality of the Evidence
Published clinical guidelines were evaluated for this review using the AGREE II criteria. The summary of these guidelines are included in the literature appraisal. AGREE II criteria evaluate Guideline Scope and Purpose, Stakeholder Involvement, Rigor of Development, Clarity and Presentation, Applicability, and Editorial Independence using a 4-point Likert scale. The higher the score, the more comprehensive the guideline.

This clinical standard specifically summarizes the evidence in support of or against specific interventions and identifies where evidence is lacking/inconclusive. The following categories describe how research findings provide support for treatment interventions.

“Evidence Supports” provides evidence to support an intervention
“Evidence Against” provides evidence against an intervention.
“Evidence Lacking/Inconclusive” indicates there is insufficient evidence to support or refute an intervention and no conclusion can be drawn from the evidence.

The GRADE criteria were utilized to evaluate the body of evidence used to make practice recommendations. The table below defines how the quality of the evidence is rated and how a strong versus weak recommendation is established. The literature appraisal reflects the critical points of evidence.

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Quality</th>
<th>Type of Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRONG</td>
<td>High</td>
<td>Consistent evidence from well-performed RCTs or exceptionally strong evidence from unbiased observational studies</td>
</tr>
<tr>
<td>WEAK</td>
<td>Moderate</td>
<td>Evidence from RCTs with important limitations (e.g., inconsistent results, methodological flaws, indirect evidence, or imprecise results) or unusually strong evidence from unbiased observational studies</td>
</tr>
<tr>
<td>WEAK</td>
<td>Low</td>
<td>Evidence for at least 1 critical outcome from observational studies, RCTs with serious flaws or indirect evidence</td>
</tr>
<tr>
<td>WEAK</td>
<td>Very Low</td>
<td>Evidence for at least 1 critical outcome from unsystematic clinical observations or very indirect evidence</td>
</tr>
</tbody>
</table>

Recommendations
Practice recommendations were directed by the existing evidence and consensus amongst the content experts. Patient and family preferences were included when possible. The Content Expert Team and EBOC team remain aware of the controversies in the diagnosis/management of Kawasaki disease in children. When evidence is lacking, options in care are provided in the clinical standard and the accompanying order sets (if applicable).

Approval Process
Clinical standards are reviewed and approved by hospital committees as deemed appropriate for its intended use. Clinical standards are reviewed as necessary within EBOC at Texas Children’s Hospital. Content Expert Teams are involved with every review and update.

Disclaimer
Practice recommendations are based upon the evidence available at the time the clinical standard was developed. Clinical standards (guidelines, summaries, or pathways) do not set out the standard of care and are not intended to be used to dictate a course of care. Each physician/practitioner must use his or her independent judgment in the management of any specific patient and is responsible, in consultation with the patient and/or the patient’s family, to make the ultimate judgment regarding care.

Version History
<table>
<thead>
<tr>
<th>Date</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jun 2019</td>
<td>Updated to guideline; previous summaries archived</td>
</tr>
</tbody>
</table>