Definition: According to the Centers for Disease and Control, a central line-associated bloodstream infection (CLABSI) is a primary bloodstream infection in a person with a central venous catheter in the 48 hours preceding the infection that cannot be attributed to another cause. In order to appropriately guide clinical care, this definition was modified. At TCH, a CLABSI is defined when a patient has a central line and has one of the following criteria:

- presence of a recognized pathogen cultured from one or more blood cultures; or
- signs/symptoms of an infection (i.e., fever, chills, or hypotension, especially when an infusion is running through the catheter) AND common skin commensal^v is cultured from two or more blood cultures drawn on separate occasions; or
- if the child is ≤1 year and has signs/symptoms of an infection (i.e., fever, hypothermia, apnea, or bradycardia) AND common skin commensal^v is cultured from two or more blood cultures drawn on separate occasions.

Pathophysiology: The central line can become a pathogen portal of entry in order to cause a bloodstream infection. The most common route of entrance is via the insertion site migrating through the catheter tract to cause colonization of the catheter tip. CLABSIs can also result from catheter colonization resulting from an infection in another location of the body. Other methods of catheter contamination include improper maintenance techniques such as contact with nonsterile surfaces, unclean hands or tainted infusate. (1)

Strict adherence to aseptic technique and CLABSI Prevention Bundle components can reduce the risk of infectious complications. This guideline will provide recommendations for the prevention of central-line associated bloodstream infections (CLABSI).

Etiology: Patient characteristics, catheter type and location, maintenance of the catheter (including dressing selection and port/hub care), as well as institutional decisions related to staffing and patient cohorting can influence the rate of CLABSI. (1) The risk factors for CLABSI are below.

- Prematurity
- Age ≤1 year
- Emergency insertion or use
- Inadequate barriers for insertion
- Poor skin antisepsis
- Prolonged duration of use
- Catheter site
- Multiple lumens
- Excessive manipulation
- Neutropenia
- Receipt of total parenteral nutrition

Inclusion Criteria

- Patients with central venous access

Exclusion Criteria

- Patients on ECMO
- Patients with a VAD
- Patients with infections that do not meet the NHSN or CDC definitions for CLABSI
- Dialysis catheters
- Umbilical catheters (For direction on placement and management of umbilical catheters (UVC and UAC), refer to the Baylor Neonatology Service Guidelines for Acute Care of the Neonate.)

Assessment

A daily assessment of line necessity should be completed for all central venous catheters. Other aspects of assessment should include:

- Dressing integrity and skin around the dressing for redness, tenderness, swelling, and drainage.
- Reports of any discomfort including pain, abnormal sensations (such as tingling), numbness at or near the catheter insertion site.
- Skin underneath the dressing assessed with each dressing change.
Critical Points of Evidence*

Evidence Supports

Catheter Selection
- Selection of central line catheter type should be based upon the length of intended intravenous therapy, type of intravenous therapy needed, and the patient's/caregiver's ability to care for the catheter. (14,18) – Strong recommendation, low quality evidence

Remarks: The guideline development team has developed an algorithm to guide clinicians in selection of the type of central line based upon recommended criteria. The team acknowledges that central lines placed in emergent situations may fall outside of the guidance for this topic.

- Consider antimicrobial-impregnated catheters on a case-by-case basis in patients with recurrent central line infections in the presence of good compliance with the central line maintenance bundle. (14,7,8,17,19-24) – Weak recommendation, moderate quality evidence

Remarks: Evidence supports the use of minocycline-rifampin and chlorhexidine antimicrobial impregnated catheters for prevention of central line associated infections and other infectious outcomes over other types of impregnation. Catheter size and availability should be considered when deciding to use an impregnated catheter.

Maintenance
- Complete daily reassessments of the necessity of central lines and remove if no longer needed. (4,6,25-30) – Strong recommendation, low quality evidence

- Utilize a team of trained individuals for central line maintenance. (4,9,27,31-35) – Strong recommendation, very low quality evidence

- Use 3.15% chlorhexidine gluconate and 70% isopropyl alcohol solution (Prevantics) with a timed, 15-second dry time to cleanse hubs/ports. (14,4,7,9,36,37) – Strong recommendation, very low quality evidence

Remarks: In 2015, the content expert team reviewed evidence comparing chlorhexidine to alcohol for cleansing hubs/ports. The team reviewed 6 studies and determined that chlorhexidine and alcohol were equally effective. (37-42) Practitioners were advised to consider the use of chlorhexidine in lieu of alcohol, as long as there were no contraindications to its use. In 2019, the question was modified to compare 3.15 % chlorhexidine gluconate and 70% isopropyl alcohol solution (Prevantics) to alcohol.

Cap Disinfection and Change
- Change the cap on central venous access devices no more frequently than every 96 hours except in patients receiving blood products and/or lipids. For patients receiving blood products and lipids, change the cap on central venous access devices no more frequently than every 24 hours. (1,4,5,63) – Strong recommendation, low quality evidence

Ethanol Lock Therapy
- Ethanol therapy does not have a clinically significant effect on silicone catheters. (4,7,44-50) – Strong recommendation, low quality evidence

- The suggested minimum frequency to administer ethanol lock therapy in silicone catheters to prevent CLABSI is at least 3 times per week for a dwell time of 2-4 hours. (4,44,51-59) – Weak recommendation, low quality evidence

- See additional recommendations for ethanol lock therapy under the ‘Evidence Against’ section.

Rewire/Repair
- Consider rewiring the CVC only on a case-by-case basis due to a possible increased risk of complications. Contraindications to rewire include: history of CLABSI, current or recent thrombosis of the same site, immunocompromised patient, or evidence of infection (e.g., fever within previous 24-48 hours, positive culture). (1,4,7,8,56,57) – Weak recommendation, very low quality evidence

Dressings
- Use a chlorhexidine-impregnated dressing for patients >48 weeks corrected gestational age. (1,4,9,44,56-63) – Strong recommendation, moderate quality evidence

Evidence Against

Ethanol Lock Therapy
- Ethanol lock therapy should not be used in polyurethane catheters. Ethanol lock therapy has a negative effect on the integrity of polyurethane catheters. (4,7,44-50) – Strong recommendation, low quality evidence

- Ethanol lock therapy is contraindicated in the following patients/situations: receiving continuous infusions that cannot be interrupted, catheter size <2 French per lumen, polyurethane catheter, weight ≤5 kg, allergy to ethanol. (1,4,44,47,51,53,55) – Strong recommendation, very low quality evidence

Evidence Lacking/Inconclusive

Rewire/Repair
- Frequency and number of catheter repairs that increase the incidence for CLABSI. (64-67) – Unable to make a recommendation

Remarks: Be cognizant of the number of times a central line has been repaired due to possible association with complications.

*NOTE: The references cited represent the entire body of evidence reviewed to make each recommendation.
Condition-Specific Elements of Clinical Management

General: Indications for central venous catheter placement include but are not limited to long-term parenteral nutrition, long-term antibiotic administration, chemotherapy administration, continuous vesicant or irritant administration, or hemodialysis. Central catheter selection should be made based upon the length of intended therapy, type of intravenous therapy needed, and the patient's/caregiver's ability to care for the catheter. (1,6-18) The four main categories of central lines are nontunneled, tunneled, peripherally inserted central catheters, and implanted ports. (9)

- **Nontunneled central catheters** are inserted via a peripherally into the subclavian, internal jugular or femoral vein and the catheter tip is advanced to the vena cava. Nontunneled central catheters are for short-term central venous access. (7,9)
- **Tunneled central catheters** are inserted into the subclavian, internal jugular, or femoral vein. The catheter end is tunneled under the skin and usually has an exit site in the chest. This type of catheter has a cuff which serves to stabilize the tubing and prevent migration of pathogens into the bloodstream. (17,9) Tunneled central catheters are surgically inserted or placed in Interventional Radiology and are for long-term central venous access.
- **Implantable ports** are surgically placed under the skin. Implantable ports connect to a catheter that enters one of the central veins and the catheter tip is advanced to the superior vena cava. Implantable ports are surgically inserted or placed in Interventional Radiology. This type of device is for long-term venous access. (7,9)
- **Peripheral inserted central catheters (PICCs)** are inserted into a peripheral vein and advanced to the vena cava. PICCs should be used for short-term venous access. (7,9)
- **Umbilical venous catheters (UVCs)** are inserted into the umbilical vein of newborn neonates within the first seven days of life. UVCs should be used for short-term venous access. (1)

Central Line Insertion Bundle (68)

- Verify the necessity of the central line daily.
- Adhere to aseptic technique.
- Perform proper hand hygiene.
- Utilize CHG skin antisepsis for all patients ≥28 weeks PMA, 1000 grams and age ≥7 days.
- Complete the insertion checklist.
- Ensure an observer is present to intervene if sterility is compromised.
- Utilize maximal sterile barriers including wearing hat, mask, gown, sterile gloves, and sterile full body drape covering the patient.
- Use appropriate dressing.

Central Line Maintenance Bundle (68)

- Discuss line necessity daily and document. Immediately remove any unnecessary central lines.
- Assess dressing hourly with infusion to assure it is clean, dry and intact.
- Assess the security of the luer-lock connections with every head-to-toe assessment.
- Bathe patient with chlorhexidine daily unless contraindicated, according to unit policy.
- Perform proper hand hygiene.
- Disinfect cap with 3.15% chlorhexidine gluconate and 70% isopropyl alcohol solution (Pevantanics) before line entry utilizing a 15-second scrub and 15-second dry time.
- Use only sterile devices to access catheters.
- Utilize sterile gloves for dressing and cap change.
- Wear a mask during dressing, line and cap change.
- Limit line access as much as possible.
- Use nonsterile gloves for all line access (except cap change which requires sterile gloves).
- Cover all access ports (including tubing) with alcohol-impregnated caps.
- Tubing Change Frequency
 - Complete full tubing change every 96 hours.
 - Change lipid tubing every 24 hours.
 - Change intermittent medication tubing that is not disconnected from the line every 96 hours. If the tubing is disconnected from the line, it should be changed every 24 hours. Intermittent medication tubing in the Newborn Center should be changed every 24 hours.
 - Change tubing for blood product administration every 24 hours.
 - Change propofol tubing every 6-12 hours or when the bag/syringe is changed. (1)
- Sterile Cap Change Frequency
 - Active lumen (continuous and intermittent infusions) caps should be changed with tubing changes, prior to blood samples for cultures, and after blood product administration. For patients receiving blood products, change the cap on central venous access devices no more frequently than every 24 hours.
 - Lumens with lipid infusions should have a cap change every 24 hours based upon patient status, otherwise every 96 hours.
 - Lumens with propofol infusions should have the cap changed at the termination of therapy.
 - Dormant lumen (no medications except heparin per protocol) caps should be changed every 96 hours.
 - A cap should be replaced with a new sterile cap utilizing the sterile cap change kit.
- Dressing Changes
 - Change central line dressing every 7 days.
For additional information on the maintenance of central lines, please access the Central Line Inventory and Care of the Patient with a Central Venous Catheter (CVC) Procedure.

Additional Measures for Prevention of CLABSI for Selected Populations

- Antimicrobial impregnated catheters can be considered on a case-by-case basis in patients with recurrent central line infections in the presence of good compliance with the central line maintenance bundle. (1,4,7,8,17,18-24)
- Ethanol lock therapy has been shown to decrease the risk of CLABSI in intestinal failure patients on long-term total parenteral nutrition. (29) If considering ethanol lock therapy, consult VAT. VAT should be consulted to determine and confirm intraluminal volume and catheter type prior to administering the first dose of the IV lock solution. Reported complications for ethanol lock therapy include, but are not limited to, increased catheter repair and replacement rate. (29) Call VAT team via page operator for any catheter complications. Below are guidelines for ethanol lock therapy at TCH.
 - Ethanol locks should only be utilized with silicone central venous devices. (4,7,44-50)
 - Ethanol lock therapy is contraindicated in the following patients/situations: receiving continuous infusions that cannot be interrupted, catheter size <2 French per lumen, polyurethane catheter, weight ≤5 kg, allergy to ethanol. (1,4,44,47,51,53,55)
- The use of ethanol lock therapy does not affect laboratory values as long as care is taken to follow proper protocol regarding serum waste and discard amount. (69-74)
- Ethanol lock therapy should be withdrawn from the catheter after the dwell period and discarded.
- There is no defined optimal frequency or dwell time for ethanol locks for the prevention of CLABSIs. The suggested minimum frequency is at least three times a week for a dwell time of 2-4 hours. (4,44,51-55)
- Care should be taken to ensure adequate flush amount when utilizing ethanol locks in patients that receive medications containing heparin and citrate due to precipitate formation and the risk of catheter occlusion. (75)

Consults/Referrals

If considering ethanol lock therapy, consult the Vascular Access Team (VAT).

Measures

Process
- Bundle compliance

Outcome
- CLABSI rate

Central Venous Catheters

<table>
<thead>
<tr>
<th>Catheter Type</th>
<th>Entry Site</th>
<th>Duration of Use</th>
<th>Advantages</th>
<th>Disadvantages</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nontunneled CVCs</td>
<td>Percutaneously inserted into central veins</td>
<td>Short-term</td>
<td>Percutaneous insertion</td>
<td>Require local anesthesia</td>
<td>CDC reports that this catheter type accounts for the majority of CLABSIs. This was not supported in a review of pediatric-only studies. More commonly used than long-term CVCs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Relatively safe and inexpensive</td>
<td>May be inserted in the operating room</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dressing required over site</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Risk of infection</td>
<td></td>
</tr>
<tr>
<td>Tunneled CVCs</td>
<td>Implanted into internal jugular, subclavian, or femoral vein</td>
<td>Long-term</td>
<td>Dressing not needed after healed</td>
<td>Require surgical insertion</td>
<td>Lower rate of infection than nontunneled CVCs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Require local or general anesthesia</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Increased cost</td>
<td>Cuff inhibits migration of organisms into catheter tract</td>
</tr>
<tr>
<td>Implantable Ports</td>
<td>Inserted in the subclavian or internal jugular vein. Tunneled beneath the skin; subcutaneous port accessed with a non-coring needle</td>
<td>Long-term</td>
<td>Improved body image (low visibility of port)</td>
<td>Require surgical insertion and removal</td>
<td>Low est risk for CLABSI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Patient comfort</td>
<td>Require general anesthesia</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Local catheter site care and dressing not needed when not in use</td>
<td>Increased cost</td>
<td></td>
</tr>
<tr>
<td>Peripherally Inserted Central Catheter</td>
<td>Inserted percutaneously into basilic, brachial, or cephalic vein and enters the superior vena cava, or the saphenous, popliteal, or femoral vein and enters the inferior vena cava</td>
<td>Usually short-term to intermediate</td>
<td>Ease of insertion, usually at the bedside by a specially trained nurse</td>
<td>Can be difficult to position in central vein</td>
<td>CDC reports a lower rate of infection than nontunneled CVCs based upon adult studies. Our review of pediatric literature did NOT find PICCs to be superior to nontunneled CVCs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Relatively inexpensive and safe</td>
<td>Potential for occlusion</td>
<td></td>
</tr>
<tr>
<td>Umbilical Venous Catheter</td>
<td>Inserted into the umbilical vein</td>
<td>Can be used up to 14 days w th if managed aseptically</td>
<td>Large vessel in neonates that can be used for venous access</td>
<td>Serious complications can occur</td>
<td>Risk for CLABSI</td>
</tr>
</tbody>
</table>

Adapted from the CDC Guideline. (1)
Clinical Algorithm for Central Line-Associated Blood Stream Infection Prevention Guideline

*Patient with need for venous access

Emergent Situation

Yes → Off Algorithm

No

Anticipated Duration of IV Fluids or Medications

- <7 Days
- 7 to 30 Days
- >30 Days

Infusate requiring central access

Yes → Short-Term Central Access Needed

No → Place a PIV

Short-Term Central Access Needed

- Consider midline catheter for IV fluids and/or medications well tolerated by peripheral veins.
- If central access needed, proceed to next step.*

Yes → Hematology/Oncology Patient

No → Exclusive long-term parenteral nutrition needed

Hematology/Oncology Patient

Yes → Catheter type based upon patient weight

Weight <7 kg

No → Weight >7 kg

Single lumen, cuffed, tunneled central venous catheter

Implantable port or double lumen, cuffed, tunneled central venous catheter

Exclusive long-term parenteral nutrition needed

Yes → No

All Other Patient Types

Select the most appropriate long-term central access device based on patient condition and medical management

- Implantable Port
- Tunneled Cuffed Central Venous Catheter
- Tunneled Non-Cuffed Central Venous Catheter
- PICC

- Implement central line maintenance bundle
- Daily reassessment of line necessity. Remove central line if not needed

Inclusion Criteria
- Patients with central venous access

Exclusion Criteria
- Patients on ECMO
- Patients with a VAD
- Dialysis catheters
- Umbilical Catheters

Criteria to Consider For Central Venous Access Placement
- Nature of infusate
- Anticipated duration of therapy
- Number of device lumens
- Catheter site* (see footnote box)

Infusates that Require Central Access
- Continuous Vesicant or Irritant
- Osmolarity >900 mOsm/L
- Parenteral Nutrition with greater than 12.5% dextrose or higher

*Catheter Rewire may be considered only on a case-by-case basis. Contraindications to rewire include: history of CLABSI, current or recent thrombosis of the same site, immunocompromised patient, or evidence of infection (e.g., fever within previous 24-48 hours, positive culture).

Inclusion Criteria
- Patients with central venous access

Exclusion Criteria
- Patients on ECMO
- Patients with a VAD
- Dialysis catheters
- Umbilical Catheters

Criteria to Consider For Central Venous Access Placement
- Nature of infusate
- Anticipated duration of therapy
- Number of device lumens
- Catheter site* (see footnote box)

Infusates that Require Central Access
- Continuous Vesicant or Irritant
- Osmolarity >900 mOsm/L
- Parenteral Nutrition with greater than 12.5% dextrose or higher

*Catheter Rewire may be considered only on a case-by-case basis. Contraindications to rewire include: history of CLABSI, current or recent thrombosis of the same site, immunocompromised patient, or evidence of infection (e.g., fever within previous 24-48 hours, positive culture).

Inclusion Criteria
- Patients with central venous access

Exclusion Criteria
- Patients on ECMO
- Patients with a VAD
- Dialysis catheters
- Umbilical Catheters

Criteria to Consider For Central Venous Access Placement
- Nature of infusate
- Anticipated duration of therapy
- Number of device lumens
- Catheter site* (see footnote box)

Infusates that Require Central Access
- Continuous Vesicant or Irritant
- Osmolarity >900 mOsm/L
- Parenteral Nutrition with greater than 12.5% dextrose or higher

*Catheter Rewire may be considered only on a case-by-case basis. Contraindications to rewire include: history of CLABSI, current or recent thrombosis of the same site, immunocompromised patient, or evidence of infection (e.g., fever within previous 24-48 hours, positive culture).
References

45. Aiyangar, A., Crone, M., Cmich, C., & Mak. (n.d). Effect of ethanol on the mechanical properties of polyurethane catheters. (Study provided by manufacturer no citation information available).

Clinical Standards Preparation
This clinical standard was prepared by the Evidence-Based Outcomes Center (EBOC) team in collaboration with content experts at Texas Children's Hospital. Development of this clinical standard supports the TCH Quality and Patient Safety Program initiative to promote clinical standards and outcomes that build a culture of quality and safety within the organization.

CLABSI Prevention Content Expert Team
Karla Abele, RN, ICU
Darlene Acorda, RN, ICU
Summer Alexander, MSN, RN, Newborn Center
Michael Braun, MD, Renal
Judith Campbell, MD, Infectious Diseases, Physician Co-lead
Dana Cerminara, PharmD, Pharmacy
Andrea Davis, MPH, Inpatient
Sheranda Fesler, RN, Nursing
Catherine Foster, MD, Infection Control
Gregory Gardner, MD, Radiology
Jordana Goldman, MD, Critical Care
Mehka Kanjia, MD, Anesthesiology
Anne Lam, RN, ICU
Lucy Marquez, MD, Infection Control
Amy Mitchell, RN, Vascular Access Team
Brent Mothren, MD, Pediatric Hospital Medicine
Amir Pezeshkmehr, MD, Interventional Radiology
Courtney Prewitt, RN, Nursing
Nicole Riccioni, APRN, CPNP-PC, Interventional Radiology
Miranda Rodrigues, RN, CVICU
Brittany Rodriguez, PharmD, Pharmacy
Lauren Salinas, RN, CVICU
Mona Shah, MD, Hematology
Julia Shelburne, MD, Pediatric Hospital Medicine
Gautham Suresh, MD, Neonatology
Kristin Van Buren, MD, Gastroenterology
Sanjeev Vasudevan, MD, Surgery
Elaine Whaley, RN, Quality & Safety

EBOC Team
Andrea Jackson, MBA, RN, Evidence-Based Practice Specialist
Jennifer Loveless, MPH, Evidence-Based Practice Specialist
Binita Patel, MD, Chief Medical Quality Officer
Monica Lopez, MD, MS, Director of Practice Standards for Surgery

Additional EBOC Support
Sherin Titus, Research Assistant
Karen Gibbs, MSN/MPH, RN, Evidence-Based Practice Specialist
Betsy Lewis, MSN, RN, CNL, Evidence-Based Practice Specialist
Sheesha Porter, MSN, RN, Evidence-Based Practice Specialist
Anne Dykes, MSN, RN, ACNS-BC, Assistant Director
Warren Boudreau, MSN, RN, Director

No relevant financial or intellectual conflicts to report.

Development Process
This clinical standard was developed using the process outlined in the EBOC Manual. The literature appraisal documents the following steps:

1. Review Preparation
 - PICO questions established
 - Evidence search confirmed with content experts

2. Review of Existing External Guidelines
 - American Society of Clinical Oncology: Central Venous Catheter Care for the Patient with Cancer (2013)
 - Infusion Nursing Society: Infusion Therapy Standards of Practice (2016)

3. Literature Review of Relevant Evidence
 - Searched: PubMed, CINAHL, Google
 - 11 meta-analyses, 8 randomized controlled trials, and 34 nonrandomized studies

4. Critically Analyze the Evidence
 - Materials used in the development of the clinical standard, literature appraisal, and any order sets are maintained in a CLABSI Prevention evidence-based review manual within EBOC.

5. Summarize the Evidence
 - Evidence from randomized controlled trials for at least 1 critical outcome from well performed RCTs with important limitations (e.g., inconsistent results, methodological flaws, indirect evidence, or imprecise results) or unusually strong evidence from unbiased observational studies.
 - Evidence from observational studies, RCTs with serious flaws or indirect evidence.

Evaluating the Quality of the Evidence
Published clinical guidelines were evaluated for this review using the AGREE II criteria. The summary of these guidelines are included in the literature appraisal. AGREE II criteria evaluate Guideline Scope and Purpose, Stakeholder Involvement, Rigor of Development, Clarity and Presentation, Applicability, and Editorial Independence using a 4-point Likert scale. The higher the score, the more comprehensive the guideline.

This clinical standard specifically summarizes the evidence in support of or against specific interventions and identifies where evidence is lacking/inconclusive. The following categories describe how research findings provide support for treatment interventions:

- **Evidence Supports** provides evidence to support an intervention.
- **Evidence Against** provides evidence against an intervention.
- **Evidence Lacking/Inconclusive** indicates there is insufficient evidence to support or refute an intervention and no conclusion can be drawn from the evidence.

The GRADE criteria were utilized to evaluate the body of evidence used to make practice recommendations. The table below defines how the quality of the evidence is rated and how a strong versus weak recommendation is established. The literature appraisal reflects the critical points of evidence.

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Type of Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRONG</td>
<td>Desirable effects clearly outweigh undesirable effects or vice versa</td>
</tr>
<tr>
<td>WEAK</td>
<td>Desirable effects closely balanced with undesirable effects</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quality</th>
<th>Type of Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>Consistent evidence from well-performed RCTs or exceptionally strong evidence from unbiased observational studies</td>
</tr>
<tr>
<td>Moderate</td>
<td>Evidence from RCTs with important limitations (e.g., inconsistent results, methodological flaws, indirect evidence, or imprecise results) or unusually strong evidence from unbiased observational studies</td>
</tr>
<tr>
<td>Low</td>
<td>Evidence for at least 1 critical outcome from observational studies, RCTs with serious flaws or indirect evidence</td>
</tr>
<tr>
<td>Very Low</td>
<td>Evidence for at least 1 critical outcome from unsystematic clinical observations or very indirect evidence</td>
</tr>
</tbody>
</table>
Recommendations

Practice recommendations were directed by the existing evidence and consensus amongst the content experts. Patient and family preferences were included when possible. The Content Expert Team and EBOC team remain aware of the controversies in the prevention of CLABSI in infants and children. When evidence is lacking, options in care are provided in the clinical standard and the accompanying order sets (if applicable).

Approval Process

Clinical standards are reviewed and approved by hospital committees as deemed appropriate for its intended use. Clinical standards are reviewed as necessary within EBOC at Texas Children’s Hospital. Content Expert Teams are involved with every review and update.

Disclaimer

Practice recommendations are based upon the evidence available at the time the clinical standard was developed. Clinical standards (guidelines, summaries, or pathways) do not set out the standard of care and are not intended to be used to dictate a course of care. Each physician/practitioner must use his or her independent judgment in the management of any specific patient and is responsible, in consultation with the patient and/or the patient’s family, to make the ultimate judgment regarding care.

<table>
<thead>
<tr>
<th>Date</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb 2014</td>
<td>Completed the IV Lock Therapy Evidence Summary.</td>
</tr>
<tr>
<td>Feb 2015</td>
<td>Completed the CLABSI Prevention Evidence Summary.</td>
</tr>
<tr>
<td>Apr 2015</td>
<td>Completed the Central Line Complications Evidence Summary.</td>
</tr>
<tr>
<td>Feb 2021</td>
<td>Merged the Central Line Complications Evidence Summary, the CLABSI Prevention Evidence Summary, and the IV Lock Therapy Evidence Summary, and added new PICO questions on the topic of CLABSI prevention.</td>
</tr>
</tbody>
</table>