Definition: (1) Acute asthma exacerbations or “asthma attacks” are episodes of progressive increase in shortness of breath, cough, wheezing, or chest tightness, or some combination of these symptoms. Respiratory distress is common. Exacerbations are characterized by decreases in expiratory airflow that can be quantified by measurement of lung function (PEF or FEV1).

Pathophysiology: (2) Asthma is a complex process that depends on the interaction of:
- Bronchoconstriction
- Airway hyperresponsiveness
- Airway inflammation, resulting in edema and mucus plugging

Inclusion Criteria
- Patients ≥2 years with a diagnosis of asthma/recurrent wheezing in whom foreign body or vocal cord dysfunction have been ruled out

Exclusion Criteria
- Other chronic lung disease, bronchiolitis, bacterial pneumonia, neurological disorders, immunodeficiency diseases, and cardiac patients

Differential Diagnosis (1,2)
- Foreign body
- Croup
- Heart failure
- Vocal cord dysfunction
- GERD

Diagnostic Evaluation

History of the Exacerbation: Assess for (1-3)
- Severity and duration of symptoms, including exercise limitation and sleep disturbance
- All current medications, including dose (and device) prescribed, dose usually taken, frequency, dose taken in response to the deterioration, and the patient’s response (or lack thereof) to this therapy
- Time of onset and cause of the present exacerbation
- Risk factors for asthma-related death
- Level of control

History of Disease: Assess for (2)
- Patient/Family history of asthma, eczema, and/or smoking
- Patient history of allergic rhinitis, sinusitis, nasal polyps, eczema, or BPD
- Recurrent cough, bronchitis, or bronchiolitis
- Cough, wheeze, shortness of breath, and/or chest tightening that occurs in an “episodic” fashion. These symptoms may occur or worsen with:
 - Exercise
 - Weather change
 - Nighttime hours
 - Viral infection
 - Inhalant exposure (e.g., smoke, fur, dust mites, mold, pollen)
 - Irritant exposure (e.g., airborne chemicals, smoke)
 - Strong emotions (e.g., laughing, crying)
 - Menstrual cycle

Physical Examination (2)
- Evaluate patient’s ability to complete a sentence
- Pulse rate
- Respiratory rate
- Use of accessory muscles
- Severity of respiratory symptoms using the Clinical Respiratory Score (CRS)
- Rhinitis, increased nasal secretions, mucosal swelling, or nasal polyps

Exacerbation Severity Assessment Tool

<table>
<thead>
<tr>
<th>Assess</th>
<th>Clinical Respiratory Score (CRS)</th>
<th>Score 0</th>
<th>Score 1</th>
<th>Score 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respiratory Rate
 <2 mos. : <30
 2-12 mos: <40
 1-5 yrs: <30
 >5 yrs: <20</td>
<td><2 mos. : 30-60
 2-12 mos: 40-50
 1-5 yrs: 30-40
 >5 yrs: 20-30</td>
<td><2 mos.: >60
 2-12 mos: >50
 1-5 yrs: >40
 >5 yrs: >30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Auscultation</td>
<td>Good air movement, scattered expiratory wheezing, loose rales/crackles</td>
<td>Depressed air movement, inspiratory and expiratory wheezes or rales/crackles</td>
<td>Diminished or absent breath sounds, severe wheezing, or rales/crackles, or marked prolonged expiration</td>
<td></td>
</tr>
<tr>
<td>Use of Accessory Muscles</td>
<td>Mild to no use of accessory muscles, mild to no retractions, no nasal flaring on inspiration</td>
<td>Moderate intercostal retractions, mild to moderate use of accessory muscles, nasal flaring</td>
<td>Severe intercostal and substernal retractions, nasal flaring</td>
<td></td>
</tr>
<tr>
<td>Mental Status</td>
<td>Normal to mildly irritable</td>
<td>Irritable, agitated, restless</td>
<td>Lethargic</td>
<td></td>
</tr>
<tr>
<td>Room Air SpO2</td>
<td>>95%</td>
<td>90-95%</td>
<td><90%</td>
<td></td>
</tr>
<tr>
<td>Color</td>
<td>Normal</td>
<td>Pale to normal</td>
<td>Cyanotic, dusky</td>
<td></td>
</tr>
</tbody>
</table>

(Add score from all rows to calculate total CRS score)

Risk factors for asthma-related death include:
- Comorbid conditions such as heart or lung disease
- Previous severe exacerbation (e.g., intubation or ICU admission)
- ≥2 hospitalizations or >3 EC visits within the past year
- Use of >2 canisters of short-acting beta-agonist (SABA) per month
- Difficulty perceiving airway obstruction or the severity of worsening asthma (parent and/or child)
- Low socioeconomic status or inner-city residence
- Illicit drug use
- Major psychosocial problems or psychiatric disease

Life-threatening asthma: involves a constellation of symptoms, including:
- Marked chest tightness
- Wheezing, severe shortness of breath
- Retractions
- Cyanosis
- Inability to speak or speak in sentences due to dyspnea
- Hunched posture
- Altered mental status (agitation, anxiety, lethargy)
The Clinical Respiratory Score (CRS) should be used to determine the level of exacerbation severity. (4-7, Unpublished TCH data) – Strong recommendation, moderate quality evidence

Pulse oximetry should be used as part of the CRS to determine the level of exacerbation severity. (1,8,9) – Strong recommendation, low quality evidence

Blood gases should be used in the critical care setting to determine the level of exacerbation severity. (1,2,3,10,11,12) – Weak recommendation, low quality evidence

Dexamethasone should be given orally in the Emergency Department (ED) and in the inpatient setting and should be administered immediately during a moderate to severe exacerbation. (13,15-32) – Weak recommendation, moderate quality evidence

Remarks:
For children with a recent (within 1-2 weeks) course of steroids, history of ICU admission, or severe persistent asthma, consider a longer course of oral steroids for asthma exacerbations. Dexamethasone tablets are easily dissolvable, up to 16 mg in 1 mL of liquid (e.g., juice, water, sports drink). IV for PO solution is not available in outpatient pharmacies.

Prednisolone/Prednisone should be given orally in the ambulatory setting. (1,3,13-32) – Weak recommendation, moderate quality evidence

Immediately administer SABA via metered-dose inhaler (MDI) for children with mild to severe asthma, reserving continuous SABA only for children requiring administration more than every 1 hour and for children with life-threatening asthma. (2,3,33-36) – Strong recommendation, moderate quality evidence

Either albuterol or levalbuterol should be used for SABA administration via MDI. (4-7, Unpublished TCH data) – Strong recommendation, low quality evidence

Albuterol should be used for SABA administration via nebulizer. Nebulized levalbuterol is an equally effective alternative but is much more expensive than nebulized albuterol. (37-42) – Strong recommendation, moderate quality evidence

Ipratropium bromide should be used with beta-agonist for three doses as adjunct therapy in children with moderate to severe asthma exacerbations. (3,4,43-49) – Strong recommendation, high quality evidence

IV magnesium sulfate should be used as adjunct therapy when there is inadequate response to conventional therapy within the first hour in children with moderate to severe asthma exacerbations. (47-50) – Strong recommendation, moderate quality evidence

IV terbutaline should be used in a monitored care setting for the treatment of children with severe asthma exacerbations. (51) – Weak recommendation, low quality evidence

Non-invasive positive pressure ventilation should be used prior to intubation in children with severe asthma exacerbations. (52-56) – Strong recommendation, low quality evidence

Tailored educational interventions should be delivered to all patients seen at TCH. (55-66) – Strong recommendation, high quality evidence

All patients seen at TCH should be given a written asthma action plan. (3,65-68) – Strong recommendation, high quality evidence

Discharge patients from the IP setting once the child has successfully completed every three-hour SABA X 2. (3,69-71) – Strong recommendation, low quality evidence

Refer any patient with an asthma exacerbation and high ED usage (≥4 visits/year), severe asthma, or previous ICU admission to an asthma specialist, if not already done. (1,72,73) – Weak recommendation, low quality evidence

Refer any patient admitted to the hospital for an asthma exacerbation to an asthma specialist (to be seen within 4-6 weeks of discharge), if not already done. (1,72-75) – Weak recommendation, low quality evidence

Ipratropium bromide should be used with beta-agonist for three doses as adjunct therapy in children with moderate to severe asthma exacerbations. (3,65-68) – Strong recommendation, high quality evidence

Dexamethasone tablets are easily dissolvable, up to 16 mg in 1 mL of liquid (e.g., juice, water, sports drink). IV for PO solution is not available in outpatient pharmacies.

Steroids for asthma exacerbations.

Dexamethasone should be given orally in the Emergency Department (ED) and in the inpatient setting and should be administered immediately during a moderate to severe exacerbation. (13,15-32) – Weak recommendation, moderate quality evidence

Begin with a dose of 4 mg/kg (up to 8 mg). For children who have not already done so, consider a longer course of oral steroids for asthma exacerbations.

Dexamethasone tablets are easily dissolvable, up to 16 mg in 1 mL of liquid (e.g., juice, water, sports drink). IV for PO solution is not available in outpatient pharmacies.

For children with a recent (within 1-2 weeks) course of steroids, history of ICU admission, or severe persistent asthma, consider a longer course of oral steroids for asthma exacerbations. Dexamethasone tablets are easily dissolvable, up to 16 mg in 1 mL of liquid (e.g., juice, water, sports drink). IV for PO solution is not available in outpatient pharmacies.

Prednisolone/Prednisone should be given orally in the ambulatory setting. (1,3,13-32) – Weak recommendation, moderate quality evidence

Immediately administer SABA via metered-dose inhaler (MDI) for children with mild to severe asthma, reserving continuous SABA only for children requiring administration more than every 1 hour and for children with life-threatening asthma. (2,3,33-36) – Strong recommendation, moderate quality evidence

Either albuterol or levalbuterol should be used for SABA administration via MDI. (4-7, Unpublished TCH data) – Strong recommendation, low quality evidence

Albuterol should be used for SABA administration via nebulizer. Nebulized levalbuterol is an equally effective alternative but is much more expensive than nebulized albuterol. (37-42) – Strong recommendation, moderate quality evidence

Ipratropium bromide should be used with beta-agonist for three doses as adjunct therapy in children with moderate to severe asthma exacerbations. (3,4,43-49) – Strong recommendation, high quality evidence

IV magnesium sulfate should be used as adjunct therapy when there is inadequate response to conventional therapy within the first hour in children with moderate to severe asthma exacerbations. (47-50) – Strong recommendation, moderate quality evidence

IV terbutaline should be used in a monitored care setting for the treatment of children with severe asthma exacerbations. (51) – Weak recommendation, low quality evidence

Non-invasive positive pressure ventilation should be used prior to intubation in children with severe asthma exacerbations. (52-56) – Strong recommendation, low quality evidence

Tailored educational interventions should be delivered to all patients seen at TCH. (55-66) – Strong recommendation, high quality evidence

All patients seen at TCH should be given a written asthma action plan. (3,65-68) – Strong recommendation, high quality evidence

Discharge patients from the IP setting once the child has successfully completed every three-hour SABA X 2. (3,69-71) – Strong recommendation, low quality evidence

Refer any patient with an asthma exacerbation and high ED usage (≥4 visits/year), severe asthma, or previous ICU admission to an asthma specialist, if not already done. (1,72,73) – Weak recommendation, low quality evidence

Refer any patient admitted to the hospital for an asthma exacerbation to an asthma specialist (to be seen within 4-6 weeks of discharge), if not already done. (1,72-75) – Weak recommendation, low quality evidence

Ipratropium bromide should be used with beta-agonist for three doses as adjunct therapy in children with moderate to severe asthma exacerbations. (3,65-68) – Strong recommendation, high quality evidence

Dexamethasone tablets are easily dissolvable, up to 16 mg in 1 mL of liquid (e.g., juice, water, sports drink). IV for PO solution is not available in outpatient pharmacies.

For children with a recent (within 1-2 weeks) course of steroids, history of ICU admission, or severe persistent asthma, consider a longer course of oral steroids for asthma exacerbations. Dexamethasone tablets are easily dissolvable, up to 16 mg in 1 mL of liquid (e.g., juice, water, sports drink). IV for PO solution is not available in outpatient pharmacies.

Prednisolone/Prednisone should be given orally in the ambulatory setting. (1,3,13-32) – Weak recommendation, moderate quality evidence

Immediately administer SABA via metered-dose inhaler (MDI) for children with mild to severe asthma, reserving continuous SABA only for children requiring administration more than every 1 hour and for children with life-threatening asthma. (2,3,33-36) – Strong recommendation, moderate quality evidence

Either albuterol or levalbuterol should be used for SABA administration via MDI. (4-7, Unpublished TCH data) – Strong recommendation, low quality evidence

Albuterol should be used for SABA administration via nebulizer. Nebulized levalbuterol is an equally effective alternative but is much more expensive than nebulized albuterol. (37-42) – Strong recommendation, moderate quality evidence

Ipratropium bromide should be used with beta-agonist for three doses as adjunct therapy in children with moderate to severe asthma exacerbations. (3,4,43-49) – Strong recommendation, high quality evidence

IV magnesium sulfate should be used as adjunct therapy when there is inadequate response to conventional therapy within the first hour in children with moderate to severe asthma exacerbations. (47-50) – Strong recommendation, moderate quality evidence

IV terbutaline should be used in a monitored care setting for the treatment of children with severe asthma exacerbations. (51) – Weak recommendation, low quality evidence

Non-invasive positive pressure ventilation should be used prior to intubation in children with severe asthma exacerbations. (52-56) – Strong recommendation, low quality evidence

Tailored educational interventions should be delivered to all patients seen at TCH. (55-66) – Strong recommendation, high quality evidence

All patients seen at TCH should be given a written asthma action plan. (3,65-68) – Strong recommendation, high quality evidence

Discharge patients from the IP setting once the child has successfully completed every three-hour SABA X 2. (3,69-71) – Strong recommendation, low quality evidence

Refer any patient with an asthma exacerbation and high ED usage (≥4 visits/year), severe asthma, or previous ICU admission to an asthma specialist, if not already done. (1,72,73) – Weak recommendation, low quality evidence

Refer any patient admitted to the hospital for an asthma exacerbation to an asthma specialist (to be seen within 4-6 weeks of discharge), if not already done. (1,72-75) – Weak recommendation, low quality evidence

Ipratropium bromide should be used with beta-agonist for three doses as adjunct therapy in children with moderate to severe asthma exacerbations. (3,65-68) – Strong recommendation, high quality evidence

Dexamethasone tablets are easily dissolvable, up to 16 mg in 1 mL of liquid (e.g., juice, water, sports drink). IV for PO solution is not available in outpatient pharmacies.

For children with a recent (within 1-2 weeks) course of steroids, history of ICU admission, or severe persistent asthma, consider a longer course of oral steroids for asthma exacerbations. Dexamethasone tablets are easily dissolvable, up to 16 mg in 1 mL of liquid (e.g., juice, water, sports drink). IV for PO solution is not available in outpatient pharmacies.
• Send all patients admitted to the hospital for an asthma exacerbation for a follow-up with their PCP within 1 week of discharge. – Consensus recommendation

• There is insufficient evidence to address the following topics: Continuation or no continuation of LABA for patients admitted to observation or inpatient status, impact of cohorting asthma inpatients or having an asthma unit, (104,105) administration of 1 dose of dexamethasone vs. 2 doses for an asthma exacerbation, (17,20,24,30,31,106) or the standard practice of administering IV fluids along with magnesium sulfate to prevent hypotension. (14,15)

*NOTE: The references cited represent the entire body of evidence reviewed to make each recommendation.

Condition-Specific Elements of Clinical Management

General: The child’s age and severity of illness are important factors to consider in diagnosing and managing an acute asthma exacerbation.

Treatment Recommendations

Exacerbation Management (see Respiratory Assessment and Management Protocol [RAMP], p. 5):

Emergency Center
1. Obtain brief history, perform physical exam, and assess exacerbation severity using the CRS (p. 1). (4-7)
2. Administer oxygen to maintain SpO\textsubscript{2} ≥90%. Transiently lower levels may be acceptable in patients who are otherwise ready for discharge.
3. Initiate SABA (levalbuterol or albuterol via MDI or albuterol via nebulizer, depending on severity). (1,3,33-42)
4. Consider/administer dexamethasone. (1,3,17,18,20-22,29,32)
5. If severity warrants, consider/add ipratropium bromide (up to 3 doses). (1-3,43-46)
6. If there is inadequate response within the first hour of conventional therapy, consider/administer IV magnesium sulfate. (47-50)
7. If condition unchanged or worsening, consider initiation of adjunct therapies, including IV terbutaline and non-invasive positive pressure ventilation (NPPV), and admit to PICU. (51-56)
8. If condition unchanged or slightly improving but continued close monitoring is required, consider IP admission.
9. If condition has improved greatly, wean SABA, complete Asthma Action Plan (see Table 1 on p. 4 for additional guidance), and discharge home. (3,65-68)

PICU
1. Continue above and consider adjunct therapies yet to be initiated.
2. Consider intubation and mechanical ventilation as needed.
3. Continue to reassess. When improving, refer to RAMP and follow to discharge.

Inpatient
1. Begin discharge process upon admission.
2. Continue therapies and wean as appropriate according to RAMP.
3. Administer flu shot, if not already given. (107)
4. Complete Asthma Action Plan (see Table 1 on p. 4 for additional guidance) and discharge criteria are met. (3,65-68)

Discharge Criteria
• No oxygen requirement
• CRS ≤3
• Response sustained at least 1-3 h after last SABA (EC) OR SABA q3h X 2 (Inpatient)
• Asthma Action Plan given
• Asthma Education complete
• Appropriate support system (e.g., PCP, caregivers)

Referrals/Follow-Up Care
• Patients admitted to the hospital for an asthma exacerbation should be seen by their PCP within 1 week of discharge.
• Consider referring patients admitted to the hospital with an asthma exacerbation to an asthma specialist (to be seen within 4-6 weeks of discharge), if not already done. (72,73)
• Refer any patient admitted to the ICU for an asthma exacerbation to an asthma specialist (to be seen within 4-6 weeks of discharge), if not already done. (72,73)
• Refer patients with high ED usage (≥4 visits/year), severe asthma, or previous ICU admission to an asthma specialist. (72,73)
• Criteria for referral to the Life-Threatening Asthma (LTA) Clinic:
 - PICU admission
 - On ventilator at any time
 - Very high ED usage without admission (≥5 visits/year)
 - Admission to the floor/TICU >2 times in past 18 months
 - History of asthma complication (e.g., loss of consciousness, seizure, cardiopulmonary arrest)
• Smoking cessation information should be given to patients, parents, and/or caregivers who are smokers.

Balanced Scorecard Measures

Process
• Time from ED arrival to delivery of beta-agonist
• Proportion of patients with a chest x-ray obtained
• Proportion of patients who received an Asthma Action Plan
• Proportion of patients filling controller medications

Outcome
• Readmission rate to the ED and inpatient
<table>
<thead>
<tr>
<th></th>
<th>Intermittent</th>
<th>Mild Persistent</th>
<th>Moderate Persistent</th>
<th>Severe Persistent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptoms</td>
<td>≤2 days/week</td>
<td>>2 days/week</td>
<td>Daily</td>
<td>Throughout the day</td>
</tr>
<tr>
<td>Nighttime awakenings</td>
<td>0 (≤4 years) ≤2x/month (≥5 years)</td>
<td>1-2x/month (≤4 years) 3-4x/month (≥5 years)</td>
<td>3-4x/month (≤4 years) >1x/week (≥5 years)</td>
<td>> 1x/week (≤4 years) Often 7x/week (≥5 years)</td>
</tr>
<tr>
<td>SABA use</td>
<td>≤2 days/week</td>
<td>>2 days/week</td>
<td>Daily</td>
<td>Several times/day</td>
</tr>
<tr>
<td>Activity limitation</td>
<td>None</td>
<td>Minor</td>
<td>Some</td>
<td>Extreme</td>
</tr>
<tr>
<td>Oral steroid usage</td>
<td>0-1x/year</td>
<td>≥2x in 6 months or ≥4x/year (≤4 years) ≥2x/year (≥5 years)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recommended therapy</td>
<td>SABA PRN</td>
<td>Low-dose ICS</td>
<td>Medium-dose ICS or Low-dose ICS + LTRA or Low-dose ICS + LABA* only if already prescribed by PCP or pulmonologist</td>
<td>Previous medications plus Subspecialist referral</td>
</tr>
</tbody>
</table>
RESPIRATORY ASSESSMENT AND MANAGEMENT PROTOCOL (RAMP) for Asthma Patients

Patients 2 years of age with asthma/wheezing excluding other chronic lung disease, bronchitis, bacterial pneumonia, neurological disorders, immune deficiency diseases, and cardiac patients.

Alert: Consider fast-tracking Life-Threatening Asthma Clinic patients.

Inpatient SABA Weaning Regimen

All SABA to be administered via MDI unless otherwise ordered by a provider.

Criteria for weaning:
- CRS 3-6 and improving
- VS stable
- Weaning as clinically indicated

Management:
- Discharge from Inpatient Unit
- RT to contact the nurse at the 1st qh
- Inpatient Discharge Criteria:
 - Room air
 - CRS ≤3
 - Administer oxygen to maintain SpO₂ ≥90% in asthma/wheezing patients. Temporarily lower levels may be acceptable in patients who are otherwise ready for discharge.
 - Refer to gray box above

EC Discharge Criteria
- Room air
- CRS ≤3
- Discharge from Home to ICU
- RT to contact the nurse at the 1st qh
- Before discharging the patient:
 - Administer oxygen to maintain SpO₂ ≥90% in asthma/wheezing patients. Temporarily lower levels may be acceptable in patients who are otherwise ready for discharge.
 - Refer to gray box above

Medication Table

<table>
<thead>
<tr>
<th>Medication</th>
<th>Route</th>
<th>Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>dexamethasone</td>
<td>IV</td>
<td>0.6 mg/kg/dose q24h (MAX: 3 mg)</td>
</tr>
<tr>
<td>dexamethasone</td>
<td>IV</td>
<td>0.5 mg/kg/dose q24h (MAX: 1.5 mg)</td>
</tr>
<tr>
<td>magnesium sulfate</td>
<td>IV</td>
<td>30 mg/kg/dose (MAX: 2 grams)</td>
</tr>
<tr>
<td>terbutaline</td>
<td>IV</td>
<td>0.5 mg/kg/dose continuous infusion, increase by 0.5 mcg/kg/min; may require ≤ 4 mg/kg/24h</td>
</tr>
</tbody>
</table>

EC Discharge Criteria
- Room air
- CRS ≤3
- Discharge from Home to ICU
- RT to contact the nurse at the 1st qh
- Before discharging the patient:
 - Administer oxygen to maintain SpO₂ ≥90% in asthma/wheezing patients. Temporarily lower levels may be acceptable in patients who are otherwise ready for discharge.
 - Refer to gray box above
References

© Evidence-Based Outcomes Center

Texas Children’s Hospital

© Evidence-Based Outcomes Center Texas Children’s Hospital
Appendix A. Asthma Action Plan

MY HOSPITAL ASTHMA ACTION PLAN - 6/24/2014 for Test Review

- **MY ASTHMA LEVEL OF SEVERITY IS:** Mild Persistent
- **MY ASTHMA TRIGGERS ARE:** smoke, air pollution, colds/respiratory infections, mold. Avoid these when possible.
- **REMEMBER:** WASH MY HANDS and get a YEARLY FLU SHOT to help avoid infections.
- **REMEMBER:** Use spacer with metered dose inhalers. Rinse mouth after using inhaled controller.

Green Zone Plan

In the Green Zone I have:
- No cough
- No wheeze
- No chest tightness

My CONTROLLER MEDICINE(S) I should take EVERY DAY to help me stay well:
{CONTROLLER MEDS: 24665}

Yellow Zone Plan

In the Yellow Zone I have:
- Early asthma symptoms
- A slight cough or wheeze
- The start of a cold

Take QUICK RELIEF Medicine:
(YELLOW ZONE MEDS: 23512: "Albuterol (Proventil, Ventolin, ProAir) or Xopenex inhaler 4 inhalations every 4 hours as needed with spacer")

Continue taking my GREEN ZONE controller medicine(s)

CALL MY DOCTOR if I don't get to the GREEN ZONE after 24 hours.

Red Zone Plan

In the Red Zone I have:
- An increasing cough
- Continued or increasing wheeze
- Fast breathing

TAKE NOW QUICK RELIEF medicine in YELLOW ZONE or increase to:
{RED ZONE MEDS: 26557: "Albuterol (Proventil, Ventolin, ProAir) or Xopenex inhaler 6 inhalations every 2-3 hours as needed with spacer for 9-12 hours")

Continue taking my GREEN ZONE controller medicine(s)

CALL MY DOCTOR NOW. Go to the HOSPITAL if I cannot reach my doctor.

- Breathing very hard or fast
- Breathing so hard I can't walk or talk
- Using neck or stomach muscles to breath
- Chest is sucking in between ribs
- QUICK RELIEF medications are NOT WORKING
- Lips or fingertips look blue
- Nose opens wide with breathing.

CONTINUE QUICK RELIEF medicine in RED ZONE

© Evidence-Based Outcomes Center
Texas Children’s Hospital
Appendix B. Recommendations for Children <2 Years

The assessment of acute asthma exacerbations in children <2 years can be difficult. The differential diagnosis of symptoms includes aspiration pneumonitis, pneumonia, bronchiolitis, tracheomalacia, and complications of underlying conditions such as congenital anomalies and cystic fibrosis. These children may not respond to the treatment recommendations made in this guideline.
Clinical Standards Preparation
This clinical standard was prepared by the Evidence-Based Outcomes Center (EBOC) team in collaboration with content experts at Texas Children’s Hospital. Development of this clinical standard supports the TCH Quality and Patient Safety Program initiative to promote clinical standards and outcomes that build a culture of quality and safety within the organization.

Acute Asthma Exacerbations Content Expert Team
Ann Craig, MD, Emergency Medicine
Kimberly Davis, RT, Respiratory
Harold Farber, MD, Pulmonary Medicine
Yong Han, MD, Pediatric Hospital Medicine
Suzanne Iniguez, RT, Respiratory Care
Julie Katkin, MD, Pulmonary Medicine
Curtis Kennedy, MD, Critical Care
Huay-jing Lo, MD, Pediatric Hospital Medicine
Erin McDade, PharmD, Pharmacy
Monica McPherson, MD, Critical Care
Robert Moore, MD, Pulmonary Medicine
Susan O’Neil, MD, Texas Children’s Pediatrics
Esther Sampayo, MD, Emergency Medicine
Kai Sanders, Asthma Educator
Mariana Sockrider, MD, DrPH, AE-C, Pulmonary Medicine
Stanley Spinner, MD, Texas Children’s Pediatrics
Scott Watson, MD, Texas Children’s Pediatrics
Elizabeth Wuestner, RN, Clinical Specialist, Emergency Center

EBOC Team
Jennifer Loveless, MPH, Evidence-Based Practice Specialist
Andrea Jackson, MBA, CCRN, Evidence-Based Practice Specialist
Betsy Lewis, MSN, RN, CNL, Evidence-Based Practice Specialist
Benedetta McCueen, MS, MA, MPH, Senior Project Manager
Janelle Smith, MSN, RN, Research Specialist
Charles Macias, MD, MPH, Medical Director

Additional EBOC Support
Sherin Titus, Research Assistant
Karen Gibbs, MSN/MPH, RN, Evidence-Based Practice Specialist
Betsy Lewis, MSN, RN, CNL, Evidence-Based Practice Specialist
Sheesha Porter, MS, RN, Evidence-Based Practice Specialist
Anne Dykes, MSN, RN, Assistant Director

Development Process
This clinical standard was developed using the process outlined in the EBOC Manual. The literature appraisal documents the following steps:

1. Review Preparation
 - PICO questions established
 - Evidence search confirmed with content experts

2. Review of Existing External Guidelines

3. Literature Review of Relevant Evidence
 - Searched: PubMed, Cochrane, CINAHL, Google Scholar, ProQuest, SumSearch

4. Critically Analyze the Evidence
 - 13 systematic reviews/meta-analyses, 33 randomized controlled trials, and 58 nonrandomized studies

5. Summarize the Evidence
 - Materials used in the development of the clinical standard, literature appraisal, and any order sets are maintained in an

Acute Asthma Exacerbations evidence-based review manual within EBOC.

Evaluating the Quality of the Evidence
Published clinical guidelines were evaluated for this review using the AGREE II criteria. The summary of those guidelines are included in the literature appraisal. AGREE II criteria evaluate Guideline Scope and Purpose, Stakeholder Involvement, Rigor of Development, Clarity and Presentation, Applicability, and Editorial Independence using a 4-point Likert scale. The higher the score, the more comprehensive the guideline.

This clinical standard specifically summarizes the evidence in support of or against specific interventions and identifies where evidence is lacking/inconclusive. The following categories describe how research findings provide support for treatment interventions.

“Evidence Supports” provides evidence to support an intervention
“Evidence Against” provides evidence against an intervention.
“Evidence Lacking/Inconclusive” indicates there is insufficient evidence to support or refute an intervention and no conclusion can be drawn from the evidence.

The GRADE criteria were utilized to evaluate the body of evidence used to make practice recommendations. The table below defines how the quality of the evidence is rated and how a strong versus weak recommendation is established. The literature appraisal reflects the critical points of evidence.

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Quality</th>
<th>Type of Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRONG</td>
<td>High</td>
<td>Consistent evidence from well-performed RCTs or exceptionally strong evidence from unbiased observational studies</td>
</tr>
<tr>
<td>WEAK</td>
<td>Moderate</td>
<td>Evidence from RCTs with important limitations (e.g., inconsistent results, methodological flaws, indirect evidence, or imprecise results) or unusually strong evidence from unbiased observational studies</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>Evidence for at least 1 critical outcome from observational studies, RCTs with serious flaws or indirect evidence</td>
</tr>
<tr>
<td></td>
<td>Very Low</td>
<td>Evidence for at least 1 critical outcome from unsystematic clinical observations or very indirect evidence</td>
</tr>
</tbody>
</table>

Recommendations
Practice recommendations were directed by the existing evidence and consensus amongst the content experts. Patient and family preferences were included when possible. The Content Expert Team and EBOC team remain aware of the controversies in the management of acute asthma exacerbations in children. When evidence is lacking, options in care are provided in the clinical standard and the accompanying order sets (if applicable).

Approval Process
Clinical standards are reviewed and approved by hospital committees as deemed appropriate for its intended use. Clinical standards are reviewed as necessary within EBOC at Texas Children’s Hospital. Content Expert Teams are involved with every review and update.

Disclaimer
Practice recommendations are based upon the evidence available at the time the clinical standard was developed. Clinical standards (guidelines, summaries, or pathways) do not set out the standard of care and are not intended to be used to dictate a course of care. Each physician/practitioner must use his or her independent judgment in the management of any specific patient and is responsible, in consultation with the patient and/or the patient’s family, to make the ultimate judgment regarding care.
Version History

<table>
<thead>
<tr>
<th>Date</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nov 2009</td>
<td>Originally completed</td>
</tr>
<tr>
<td>Jan 2014</td>
<td>Updated</td>
</tr>
<tr>
<td>Jan 2017</td>
<td>Revised</td>
</tr>
<tr>
<td>Jan 2019</td>
<td>Updated recommendations on steroids, revised verbiage for referrals, and added recommendation on magnesium dosing. Revised RAMP to reflect a 'maximum' wean of q4h albuterol dosing versus PRN albuterol dosing. Reaffirmed all other practice recommendations.</td>
</tr>
</tbody>
</table>